화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.1, 52-57, February, 2014
Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성
Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite
E-mail:
초록
본 연구에서는 낮은 사이클 안정성을 갖는 MCMB의 단점을 향상시키기 위하여 높은 사이클 안정성과 부피팽창이 없는 장점을 갖는 물질인 Li4Ti5O12를 코팅하여 core-shell 구조의 MCMB/Li4Ti5O12를 합성하고 MCMB-Li4Ti5O12를 음극으로, LiMn2O4, Active carbon fiber를 양극으로 사용하여 단위 셀을 제조하였다. LiPF6 염과 EC/DMC/EMC 용매를 전해질로 사용하여 제조한 하이브리드 커패시터 단위 셀로 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 전기화학적 특성을 평가한 결과, MCMB-Li4Ti5O12/LiMn2O4 전극을 사용한 하이브리드 커패시터가 MCMB 전극의 하이브리드 커패시터 보다 좋은 충/방전 성능을 보였고, 67 Wh/kg, 781 W/kg의 에너지밀도와 출력밀도를 나타내었다.
The MCMB-Li4Ti5O12 with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-Li4Ti5O12 as the negative electrode and LiMn2O4, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF6, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-Li4Ti5O12/LiMn2O4 electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.
  1. Conway BE, “Electrochemical Superconducts : Scientific Fundamentals and Technological Appliaction,” Kluwer Academic, New York, 105 (1999)
  2. Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK, Korean J. Chem. Eng., 28(6), 1464 (2011)
  3. Lee SW, Park DK, Lee JK, Ju JB, Shon TW, Korean J. Chem. Eng., 18, 371 (2011)
  4. Aida T, Murayama I, Yamada K, Morita M, J. Electrochem. Soc., 154, 798 (2007)
  5. Burke A, Electrochim. Acta, 53(3), 1083 (2007)
  6. Kim IH, Kim KB, J. Electrochem. Soc., 153, 383 (2006)
  7. Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
  8. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L, Int. J. Hydrog. Energy, 34, 4889 (2009)
  9. Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB, Electrochem. Commun, 9, 2807 (2007)
  10. Yoon JH, Bang HJ, Prakash J, Sun YK, Mater. Chem. Phys., 110(2-3), 222 (2008)
  11. Jie W, Hailei Z, Qian Y, Chunmei W, Pengpeng L, Qing X, J. Power Sources, 222, 196 (2013)
  12. Guo KK, Pan QM, Fang SB, J. Power Sources, 111(2), 350 (2002)
  13. Lee JW, Park SM, Kim HJ, J. Power Sources, 188(2), 583 (2009)
  14. Kosova N, Devyatkina E, Slobodyuk A, Kaichev V, Solid State Ion., 179(27-32), 1745 (2008)
  15. Shi Y, Wen L, Li F, Cheng HM, J. Power Sources, 196(20), 8610 (2011)
  16. Naoi K, Ishimoto S, Isobe Y, Aoyagi S, J. Power Sources, 195(18), 6250 (2010)
  17. Fang W, Cheng XQ, Zuo PJ, Ma YL, Yin G, Electrochim. Acta., 93, 173 (2013)
  18. Yoon HJ, Lee CH, Lee JD, Korean Chem. Eng. Res., 29, 10 (2011)
  19. Lee ML, Li YH, Liao SC, Chen JM, Yeh JW, Shih HC, Appl. Surf. Sci., 258(16), 5938 (2012)
  20. Lu M, Tian Y, Zheng X, Gao J, Huang B, J. Power Sources., 219, 188 (2012)
  21. Cericola D, Novak P, Wokaun A, Kotz R, J. Power Sources, 196(23), 10305 (2011)
  22. Yang JJ, Choi CH, Seo HB, Kim HJ, Park SK, Electrochim. Acta., 86, 277 (2012)
  23. Hu XB, Deng ZH, Suo JS, Pan ZL, J. Power Sources, 187(2), 635 (2009)
  24. Han CH, Hong YS, Hong HS, Kim K, J. Power Sources, 111(1), 176 (2002)
  25. Chung KY, Kim KB, Electrochim. Acta, 49(20), 3327 (2004)