Korean Chemical Engineering Research, Vol.52, No.1, 52-57, February, 2014
Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성
Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite
E-mail:
초록
본 연구에서는 낮은 사이클 안정성을 갖는 MCMB의 단점을 향상시키기 위하여 높은 사이클 안정성과 부피팽창이 없는 장점을 갖는 물질인 Li4Ti5O12를 코팅하여 core-shell 구조의 MCMB/Li4Ti5O12를 합성하고 MCMB-Li4Ti5O12를 음극으로, LiMn2O4, Active carbon fiber를 양극으로 사용하여 단위 셀을 제조하였다. LiPF6 염과 EC/DMC/EMC 용매를 전해질로 사용하여 제조한 하이브리드 커패시터 단위 셀로 충방전, 사이클, 순환전압전류, 임피던스 테스트를 진행하여 전기화학적 특성을 평가한 결과, MCMB-Li4Ti5O12/LiMn2O4 전극을 사용한 하이브리드 커패시터가 MCMB 전극의 하이브리드 커패시터 보다 좋은 충/방전 성능을 보였고, 67 Wh/kg, 781 W/kg의 에너지밀도와 출력밀도를 나타내었다.
The MCMB-Li4Ti5O12 with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-Li4Ti5O12 as the negative electrode and LiMn2O4, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF6, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-Li4Ti5O12/LiMn2O4 electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.
Keywords:Meso Carbon Microbeads;Li4Ti5O12;Core-shell Structure;Surface Modification;Hybrid Capacitor
- Conway BE, “Electrochemical Superconducts : Scientific Fundamentals and Technological Appliaction,” Kluwer Academic, New York, 105 (1999)
- Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK, Korean J. Chem. Eng., 28(6), 1464 (2011)
- Lee SW, Park DK, Lee JK, Ju JB, Shon TW, Korean J. Chem. Eng., 18, 371 (2011)
- Aida T, Murayama I, Yamada K, Morita M, J. Electrochem. Soc., 154, 798 (2007)
- Burke A, Electrochim. Acta, 53(3), 1083 (2007)
- Kim IH, Kim KB, J. Electrochem. Soc., 153, 383 (2006)
- Frackowiak E, Beguin F, Carbon, 39, 937 (2001)
- Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L, Int. J. Hydrog. Energy, 34, 4889 (2009)
- Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB, Electrochem. Commun, 9, 2807 (2007)
- Yoon JH, Bang HJ, Prakash J, Sun YK, Mater. Chem. Phys., 110(2-3), 222 (2008)
- Jie W, Hailei Z, Qian Y, Chunmei W, Pengpeng L, Qing X, J. Power Sources, 222, 196 (2013)
- Guo KK, Pan QM, Fang SB, J. Power Sources, 111(2), 350 (2002)
- Lee JW, Park SM, Kim HJ, J. Power Sources, 188(2), 583 (2009)
- Kosova N, Devyatkina E, Slobodyuk A, Kaichev V, Solid State Ion., 179(27-32), 1745 (2008)
- Shi Y, Wen L, Li F, Cheng HM, J. Power Sources, 196(20), 8610 (2011)
- Naoi K, Ishimoto S, Isobe Y, Aoyagi S, J. Power Sources, 195(18), 6250 (2010)
- Fang W, Cheng XQ, Zuo PJ, Ma YL, Yin G, Electrochim. Acta., 93, 173 (2013)
- Yoon HJ, Lee CH, Lee JD, Korean Chem. Eng. Res., 29, 10 (2011)
- Lee ML, Li YH, Liao SC, Chen JM, Yeh JW, Shih HC, Appl. Surf. Sci., 258(16), 5938 (2012)
- Lu M, Tian Y, Zheng X, Gao J, Huang B, J. Power Sources., 219, 188 (2012)
- Cericola D, Novak P, Wokaun A, Kotz R, J. Power Sources, 196(23), 10305 (2011)
- Yang JJ, Choi CH, Seo HB, Kim HJ, Park SK, Electrochim. Acta., 86, 277 (2012)
- Hu XB, Deng ZH, Suo JS, Pan ZL, J. Power Sources, 187(2), 635 (2009)
- Han CH, Hong YS, Hong HS, Kim K, J. Power Sources, 111(1), 176 (2002)
- Chung KY, Kim KB, Electrochim. Acta, 49(20), 3327 (2004)