화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.1, 16-23, January, 2014
Orthogonal 방법을 통한 Poly(AM-DMDAAC)/MMT 고흡수성 나노복합체 제조 연구
Optimization of Preparing Poly(AM-DMDAAC)/MMT Superabsorbent Nanocomposite by Orthogonal Experiment
E-mail:
A novel poly(AM-DMDAAC)/MMT superabsorbent nanocomposites are prepared by radical polymerization using ammonium persulfate (APS) and anhydrous sodium sulfite as a free radical initiator and N,N-methylene bisacrylamide (MBA) as a crosslinker. In this paper, an optimization study on the synthesis of superabsorbent nanocomposites is carried out. Orthogonal array experiment indicates that the optimized conditions is acrylamide (AM) content 23 wt%, diallyl dimethyl ammonium chloride (DMDAAAC) content 6 wt%, montmorillonite (MMT) content 4 wt%, initiator content 0.2 wt% and crosslinker content 0.02 wt%. Under the optimization syntheses conditions concluded, the maximum water absorbency in distilled water is 659.53 g·g^(-1) and in 2 wt% sodium chloride solution is 116.25 g·g^(-1). Compared with the range values of different factors (Rj), the order of significance factors in distilled water is C (MMT) > B (DMDAAC) > A (AM) > D (crosslinker) > E (initiator). MMT is intercalated during polymerization reaction and a nanocomposite structure is formed as shown by TEM analysis and XRD analysis.
  1. Kosemund K, Schlatter H, Ochsenhirt JL, Krause EL, Marsman DS, Erasala GN, Regul. Toxicol. Pharm., 53, 81 (2009)
  2. Sadeghi M, Hosseinzadeh H, J. Bioact. Compat. Pol., 23, 381 (2008)
  3. Zhou M, Yang Y, Dai JL, Polym. Mater. Sci. Eng. (Chinese), 24, 36 (2008)
  4. Po R, J. Macromol. Sci. Rev. Macromol. Chem. Phys., 34, 607 (1994)
  5. Zhang J, Yuan K, Wang YP, Gu SJ, Zhang ST, Mater. Lett., 61, 316 (2007)
  6. Wan T, Wang XQ, Yuan Y, He WQ, J. Appl. Polym. Sci., 102(3), 2875 (2006)
  7. Wang AQ, Zhang JP, Organic/Inorganic Superabsorbent Composites (Chinese), Science, Beijing (2006)
  8. Zhou M, Zhao JZ, Zhou LZ, J. Appl. Polym. Sci., 121(4), 2406 (2011)
  9. de Paiva LB, Morales AR, Diaz FRV, Appl. Clay Sci., 42, 8 (2008)
  10. Chan KY, Kwong CK, Luo XG, Expert. Syst. Appl., 36, 7379 (2009)
  11. Evangelaras H, Kolaiti E, Koukouvinos C, J. Stat. Plan. Infer., 136, 3698 (2006)
  12. Chuanwen C, Feng S, Yuguo L, Shuyun W, J. Mater. Sci.: Mater. Electron., 21, 349 (2009)
  13. Wu X, Leung DYC, Appl. Energy, 88(11), 3615 (2011)
  14. Flory PJ, Principles of Polymer Chemistry, Cornell University Press, Ithaca (1953)
  15. Chen JW, Zhao YM, J. Appl. Polym. Sci., 75(6), 808 (2000)
  16. Li A, Wang AQ, Chen JM, J. Appl. Polym. Sci., 92(3), 1596 (2004)
  17. Zhou M, Zhao JZ, Pu WF, E-Polymers, 84, 1618 (2012)
  18. Gholam BM, Gholam RM, Shahrzad G, J. Polym. Res., 18, 1487 (2011)
  19. Su XF, Zhang G, Xu K, Wang JH, Song CL, Wang PX, Polym. Bull., 60(1), 69 (2008)
  20. Yadav M, Rhee KY, Carbohydr. Polym., 90, 165 (2012)
  21. Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX, J. Polym. Degrad. Stab., 90, 123 (2005)