화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.1, 194-201, January, 2014
Low-temperature catalytic conversion of lignite: 2. Recovery and reuse of potassium carbonate supported on perovskite oxide in steam gasification
E-mail:
Catalytic recovery after repeated uses of unsupported K2CO3 or K2CO3 supported on 3 kinds of perovskites (LaMn0.8Cu0.2O3, LaMn0.8Cu0.2O3/γ-alumina, and La0.9K0.1MnO3) was investigated during steam gasification of an Indonesian lignite (Adaro) at 700 ℃. Perovskite supports effectively retained K2CO3 and maintained higher catalytic activity than K2CO3 alone. The supported catalysts were recovered from the ash after gasification based on their size and ferromagnetism. Quartz and alumina accumulation on the catalyst poisoned the ash due to reactivity with potassium. Catalytic activity as high as 90% carbon conversion was maintained up to seven cycles, and separation from the ash after gasification regenerated the activity.
  1. Kern S, Pfeirter C, Hofbauer H, Fuel Processing Technology., 111, 1 (2013)
  2. Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D, Applied Thermal Engineering., 54(1), 111 (2013)
  3. Domazetis G, James BD, Liesegang J, Raoarun M, Kuiper M, Potter ID, Oehme D, Fuel, 93(1), 404 (2012)
  4. Civan F, Chem. Eng. Prog., 109(2), 43 (2013)
  5. Kariznovi M, Nourozieh H, Abedi J, Chen ZX, Chem. Eng. Res. Des., 91(3), 464 (2013)
  6. Ahmed I, Gupta AK, Applied Energy., 102, 355 (2013)
  7. Karatas H, Olgun H, Akgun F, Fuel Processing Technology., 106, 666 (2013)
  8. Abani N, Ghoniem AF, Fuel., 104, 664 (2013)
  9. Bhutto AW, Bazmi AA, Zahedi G, Progress in Energy and Combustion Science., 39(1), 189 (2013)
  10. Shaddix CR, Combust. Flame, 159(10), 3003 (2012)
  11. Wang H, Zhao Z, Xu CM, Liu J, Catal. Lett., 102(3-4), 251 (2005)
  12. Ekins P, Hydrogen Energy: Economic and Social Challenges, Earthscan, London, UK (2009)
  13. Shoko E, McLellan B, Dicks AL, da Costa JCD, Int. J. Coal Geol., 65(3-4), 213 (2006)
  14. Molina A, Mondragon F, Fuel, 77(15), 1831 (1998)
  15. Michel R, Rapagna S, Di Marcello M, Burg P, Matt M, Courson C, Gruber R, Fuel Process. Technol., 92(6), 1169 (2011)
  16. Namou P, Murillo HEG, Swaaij WPMV, Rossum GV, Kersten SRA, Chemical Engineering Journal., 217, 289 (2013)
  17. Michel R, Rapagna S, Burg P, di Celso GM, Courson C, Zimny T, Gruber R, Biomass Bioenerg., 35(7), 2650 (2011)
  18. Andre´ s JMD, Narros A, Rodrı´guez MZ, Fuel Processing Technology., 92(2), 521 (2011)
  19. de Andres JM, Narros A, Rodriguez ME, Fuel Process. Technol., 92(3), 433 (2011)
  20. Rapagna S, Virginie M, Gallucci K, Courson C, Di Marcello M, Kiennemann A, Foscolo PU, Catal. Today, 176(1), 163 (2011)
  21. Lamacz A, Krzton A, Djega-Mariadassou G, Catal. Today, 176(1), 347 (2011)
  22. Min ZH, Asadullah M, Yimsiri P, Zhang S, Wu HW, Li CZ, Fuel, 90(5), 1847 (2011)
  23. Nahas NC, Fuel., 62, 239 (1983)
  24. Miyazaki T, Tokubuchi N, Inoue M, Arita M, Mochida I, Energy Fuels, 12(5), 870 (1998)
  25. Kim YK, Hao LF, Park JI, Miyawaki J, Mochida I, Yoon SH, Fuel, 94(1), 516 (2012)
  26. Slagtern A, Olsbye U, Appl. Catal. A: Gen., 110(1), 99 (1994)
  27. Doggali P, Kusaba S, Teraoka Y, Chankapure P, Rayalu S, Labhsetwar N, Catalysis Communications., 11, 665 (2010)
  28. Wen CY, Yu YH, AIChE Journal., 12, 610 (1966)
  29. Shimokawa H, Kusaba H, Einaga H, Teraoka Y, Catalysis Today., 139, 8 (2008)