화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.1, 96-99, January, 2014
Transformation of CaCO3 to single crystalline micro/nanowires
E-mail:
Single crystalline CaCO3 micro-nanowires were grown from the solution using poly-vinyl alcohol (PVA) to direct crystal growth and SiO2 nanoparticles acting as seeds for the growth of amorphous CaCO3. The aragonite and calcite micro/nanowire, diameter ranging from 70 to 700 nm, were transformed mostly from rhombohedral calcite and vaterite. The micro/nanowires or spicules grown on glass substrate had lengths ranging from 10 to 50 mm and the growth direction showed no orientational relationship to substrate. Without the use of either SiO2 or PVA, there was no formation of either the amorphous CaCO3 or the micro/nanowires or spicules.
  1. Tong H, Wan P, Ma WT, Zhong GR, Cao LX, Hu JM, J. Struct. Biol., 163(1), 1 (2008)
  2. Feng QL, Pu G, Pei Y, Cui FZ, Li HD, Kim TN, J. Cryst. Growth, 216(1-4), 459 (2000)
  3. Aizenberg J, Nature., 412, 819 (2001)
  4. Mann S, Richbald DDA, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves JJ, Science., 261, 1286 (1993)
  5. Xiao JW, Wang ZN, Tang YC, Yang SH, Langmuir, 26(7), 4977 (2010)
  6. Lowenstam HA, Weiner S, On Biomineralization, Oxford University Press, New York (1989)
  7. Mann S, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, New York (2001)
  8. Hwang DJ, Cho KH, Choi MK, Yu YH, Lee SK, Ahn JW, Lim GI, Han C, Lee JD, Korean J. Chem. Eng., 28(9), 1927 (2011)
  9. Ni M, Ratner BD, Surface and Interface Analysis., 40, 1356 (2008)
  10. Wei H, Shen Q, Zhao Y, Wang DJ, Xu DF, J. Cryst. Growth, 250(3-4), 516 (2003)
  11. Ku¨ ther J, Seshadri R, Knoll W, Tremel W, Journal of Materials Chemistry., 8(3), 641 (1998)
  12. Shen Q, Wei H, Zhou Y, Huang YP, Yang HR, Wang DJ, Xu DF, J. Phys. Chem. B, 110(7), 2994 (2006)
  13. Mann S, Frankel RB, Blakemore RP, Nature., 310, 405 (1984)
  14. Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch H, Nature., 343, 258 (1990)
  15. Bazylinski DA, Heywood BR, Mann S, Frankel RB, Nature., 366, 218 (1993)
  16. Kirkland BL, Lynch FL, Rahnis MA, Folk RL, Molineux IJ, McLean RJC, Geology., 27(4), 347 (1999)
  17. Stober W, Fink A, Bohn E, Journal of Colloid and Interface Science., 26, 62 (1968)
  18. Isık M, Altas L, Ozcan S, Simsek I, Agdag ON, Alas A, J. Ind. Eng. Chem., 18(6), 1908 (2012)
  19. Beveridge TJ, Meloche JD, Fyfe WS, Murray RGE, Applied and Environmental Microbiology., 45, 1094 (1983)
  20. Thompson JB,, Ferries FG, Geology., 18, 995 (1990)
  21. Ogino T, Suzuki T, Sawada K, Geochimica et Cosmochimica Acta., 51, 2757 (1987)
  22. Maciejewski M, Oswald HR, Reller A, Thermochim. Acta, 234, 315 (1994)
  23. Yamaguchi T, Murakawa K, Zairyo., 30, 856 (1981)
  24. Friedman GM, Schultz DJ, Mineralogical Magazine., 58, 401 (1994)
  25. Chen YJ, Xiao JW, Wang ZN, Yang SH, Langmuir, 25(2), 1054 (2009)
  26. Gopinath CS, Hegde SG, Ramaswamy AV, Mahapatra S, Mater. Res. Bull., 37(7), 1323 (2002)
  27. Hosoda N, Sugawara A, Kato T, Macromolecules, 36(17), 6449 (2003)
  28. Lakshminarayanan R, Valiyaveettil S, Crystal Growth and Design., 3, 953 (2003)
  29. Kim IW, Robertson RE, Zand R, Crystal Growth and Design., 5, 513 (2005)
  30. Choi BS, Ring TA, Journal of Crystal Growth., 269, 575 (2005)