화학공학소재연구정보센터
Clean Technology, Vol.19, No.4, 437-445, December, 2013
연소 전 이산화탄소 회수를 위한 흡수제 및 촉매의 수력학적 특성
Hydrodynamic Characteristics of Absorbent and Catalyst for Pre-combustion CO2 Capture
E-mail:
초록
건식 이산화탄소 흡수제를 사용하는 연소 전 이산화탄소 포집용 회수증진수성가스화(sorption enhanced water gas shift, SEWGS) 시스템을 개발하기 위해 이산화탄소 흡수제의 수력학 특성을 측정 및 해석하였다. 기포유동층 조건에서 시스템을 조업하기 위해 이산화탄소 흡수제의 최소유동화속도를 측정하였으며 조업변수의 영향을 해석하였다. 최소유동화속도는 압력과 온도가 증가함에 따라 감소하였으며 층직경이 증가함에 따라 감소하는 경향을 나타내었다. 연속적인 이산화탄소 흡수-재생 조업조건을 결정하기 위해 고체순환속도에 미치는 조업변수의 영향을 측정 및 해석하였다. 고체순환속도는 10~65kg/h 범위에서 변화시킬 수 있었으며 고체분사노즐의 유속, 재생반응기의 유속 및 고체층 높이가 증가함에 따라 증가하는 경향을 나타내었다.
To develop SEWGS (sorption enhanced water gas shift) system using dry CO2 absorbent for pre-combustion CO2 capture, hydrodynamic characteristics of CO2 absorbents were measured and investigated. The minimum fluidization velocity of CO2 absorbent was measured and the effects of the operating conditions were investigated to operate the system at bubbling fluidized bed condition. The minimum fluidization velocity decreased as pressure and temperature increased. Moreover, the minimum fluidization velocity decreased as column diameter increased. The effects of operating conditions on the solid circulation rate were measured and investigated to select appropriate operating conditions for continuous CO2 capture and regeneration. The measured solid circulation rates were ranged between 10 and 65 kg/h and increased as the solid injection velocity, gas velocity in the regeneration reactor, and solid height increased.
  1. James R, “Clean Coal technology Status: CO2 Capture and Storage,” Technology Briefing for Colorado Rural Electric Association, EPRI (2007)
  2. Ryu HJ, Trans. Korean Hydro. New Energy Soc., 20(2), 168 (2009)
  3. Ryu HJ, Hyun JS, Kim H, Hwang TS, Trans. Korean Hydro. New Energy Soc., 22(4), 465 (2011)
  4. Maurstad O, “An Overview of Coal Based Integrated Gasification Combined Cycle (IGCC) Technology,” MIT Report,Publication No. LFEE 2005-002 WP, 1 (2008)
  5. Ryu HJ, Kim HS, Lee SY, Lee DH, Kim JC, Korean Chem. Eng. Res., 50(6), 994 (2012)
  6. Kim H, Lee DH, Lee SY, HwangTS, Ryu HJ, Trans.Korean Hydro. New Energy Soc., 23(4), 337 (2012)
  7. Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178 (2008)
  8. Ryu HJ, Park JH, Kim HK, Park MH, Korean Chem. Eng. Res., 46(6), 1057 (2008)
  9. Ryu HJ, Jin GT, Bae DH, Kim HK, Korean Chem. Eng. Res., 47(3), 355 (2009)
  10. Botterill JSM, Teoman Y, “Fluid-Bed Behaviour at Elevated Temperatures,” in Int. Fluidization Conf., Edited by Grace JR, Matsen JM, Plenum Press, New York, 93 (1980)
  11. Botterill JSM, Teoman Y, Yuregir KR, Powder Technol., 31, 101 (1982)
  12. Ergun S, Chem.Eng. Prog., 48, 89 (1952)
  13. Wen CY, Yu YH, AIChE J., 12, 610 (1966)
  14. Ryu HJ, “Slug Characteristics and Transition Velocity to Turbulent Fluidization in Gas Fluidized Beds,” Ph. D. Dissertation, Konkuk University, Seoul (2000)