Journal of Chemical Physics, Vol.100, No.8, 5666-5683, 1994
Time-Resolved Double-Resonance Study of J-Changing and K-Changing Rotational Collisional Processes in Ch3Cl
Time-resolved double resonance spectroscopy using infrared pump radiation and millimeter-wave and submillimeter-wave probe radiation (IRMMDR) has been used to study rotational energy transfer (RET) in CH3Cl. A collisional energy transfer model using only five parameters for RET plus those needed for vibrational processes is shown to accurately model 350 IRMMDR time responses for two different pump states and 43 probe transitions covering a wide range of rotational states. Previous studies in this laboratory have revealed that J- and K-changing RET have vastly different characters in CH3F [J. Chem. Phys. 92, 6480 (1990)]. Both J- and K-changing RET were accurately modeled with four parameters-one for dipole-dipole collisions, two for the DELTAJ scaling law, and one for the cumulative rate of K-changing collisions. As was found for CH3F, J-changing rotational collision rates in CH3Cl are modeled accurately by both the statistical power gap (SPG) law and the infinite order sudden approximation using a power law expression for the basis rates (IOS-P). However, in contrast to CH3F, where all IRMMDR time responses for K-changing collisions have the same shape, many time responses of CH3Cl states populated by K-changing collisions contain an additional early time feature (ETF) that varies with pump and probe states. Nonetheless, a simple generalization of the previously reported model for K-changing collisions is shown to account for all of the additional features observed in CH3Cl. Rather than observing a fixed temperature for K-changing collisions as was the case for CH3F, the temperature is found to be a function of time for CH3Cl. Moreover, the two new parameters this adds to the RET model are related to known physical quantities. A qualitative argument of K-changing collisions based on a classical picture is offered to explain the difference between the measured J- and K-changing state-to-state rates in CH3Cl.
Keywords:INFRARED DOUBLE-RESONANCE;TUNABLE DIODE-LASER;COMBINATION BAND INTENSITIES;ULTRAVIOLET DOUBLE-RESONANCE;ENERGY-TRANSFER MEASUREMENTS;ORDER SUDDEN APPROXIMATION;SPHERICAL TOP MOLECULES;METHYL-FLUORIDE;MILLIMETER-WAVE;SCALING LAW