화학공학소재연구정보센터
Nature Materials, Vol.12, No.11, 1056-1062, 2013
Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge
Fast, reversible redox reactions in solids at low temperatures without thermomechanical degradation are a promising strategy for enhancing the overall performance and lifetime of many energy materials and devices. However, the robust nature of the cation's oxidation state and the high thermodynamic barrier have hindered the realization of fast catalysis and bulk diffusion at low temperatures. Here, we report a significant lowering of the redox temperature by epitaxial stabilization of strontium cobaltites (SrCoOx) grown directly as one of two distinct crystalline phases, either the perovskite SrCoO3-delta or the brownmillerite SrCoO2.5. Importantly, these two phases can be reversibly switched at a remarkably reduced temperature (200-300 degrees C) in a considerably short time (<1 min) without destroying the parent framework. The fast, low-temperature redox activity in SrCoO3-delta is attributed to a small Gibbs free-energy difference between two topotatic phases. Our findings thus provide useful information for developing highly sensitive electrochemical sensors and low-temperature cathode materials.