화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.4, 690-699, August, 1995
Methyl Isobutyl Ketone의 촉매소각에 대한 연구
A Study on the Catalytic Incineration of Methyl Isobutyl Ketone
초록
대표적인 귀금속 및 전이금속 산화물 촉매들을 제조하여 Methyl Isobuthyl Ketone의 연소반응에 대한 활성도를 비교하였다. 이때 Pd/Al2O3와 CuCr2O4/Al2O3의 활성도가 특히 우수하였으며, Co3O4를 제외한 나머지의 촉매들은 고온에서 장시간동안 활성을 유지하였다. 403-443 K 범위에서 적분형 반응기를 이용하여 kinetics실험을 수행한 결과, Pd와 CuCr2O4의 활성화 에너지는 9.2및 11.4Kca1/mol 이었다. Monolith type 촉매전환장치의 운행조건 및 설계변수의 변화에 따른 정상상태 response를 수학적 모델을 이용하여 계산한 결과 실제공정의 조건에서 대부분의 경우 연소과정이 물질전달 지배영역에서 진행됨을 알 수 있었다. 반응물의 높은 유입온도와 농도 및 낮은 유입속도에서 높은 전환율을 얻을 수 있었으며, cell density가 클수록 유기용매의 제거성능이 우수하였다. 또한 channel의 크기와 모양이 전환율 및 온도분포에 중요한 영향을 미침을 알 수 있었다.
Activities of precious metals and selected transition metal oxide catalysts for methyl isobuthyl ketone(MIBK) combustion were measured, and among the catalysts tested, Pd/Al2O3 and CuCr2BO4/Al2O3 were found most effective. Kinetic experiments were conducted using an integral reactor for Pd and CuCr2O4 catalysts. In the temperature range of 403-443 K, activation energies for Pd and CuCr2O4 catalyst on MIBK oxidation were estimated to be 9.2 and 11.4Kca1/gmol, respectively. Steady state responses of a monolith catalytic incinerator to changes in operating conditions or monolith design parameters have been examined on the basis of one dimensional mathematical model. Calculations showed that, under typical operating conditions, the catalyst system is operating under mass transfer controlled conditions. Higher conversion efficiencies were obtained with higher inlet temperatures and higher MIBK concentrations, and with low gas velocities. Monoliths having higher channel densities offer superior performances. It was implicated that channel size and shape can have significant influences on the conversion and temperature profiles along the monolith channels.
  1. Jennings MS, Krohn NE, Berry RS, Palazzolo MA, Parks RM, Fidler KK, "Catalytic Incineration for Controlof VOC Emissions," NOYES Publication, Park Ridge, N.J. (1985)
  2. Lee SH, Shon EK, Chem. Ind. Technol., 12(2), 128 (1994)
  3. Blazowski WS, Walsh DE, Combust. Sci. Technol., 10, 233 (1975)
  4. Sood A, Quinian CW, Kittrell JR, Ind. Eng. Chem. Prod. Res. Dev., 15, 176 (1976) 
  5. YuYao-YF, Kummer JT, J. Catal., 39, 104 (1975) 
  6. Zhang HM, Teraoka Y, Yamazoe N, Appl. Catal., 41, 137 (1988) 
  7. Stiles AB, "Catalyst Manufacture," 158, Marcel Dekker, Inc., N.Y. (1983)
  8. Lory EC, J. Phys. Chem., 37, 685 (1933) 
  9. Bensie HA, Curtis RM, J. Catal., 10, 328 (1968) 
  10. Taylor HS, J. Phys. Chem., 53, 578 (1931) 
  11. Chu CT, Dunn B, J. Am. Ceram. Soc., 70(12), 375 (1987)
  12. YaMargolis L, Advances in Catalysis, 14, Academic Press (1963)
  13. Votruba J, Sinkule J, Hlavacek V, J. Skrivanek Chem. Eng. Sci., 30, 117 (1975) 
  14. Cooper BJ, Strom T, Rolles Royce Ltd., Aero-Division Project Report No. 197 (1978)
  15. Hawthorn RD, AIChE Symp. Ser., 70, 428 (1974)