화학공학소재연구정보센터
Macromolecules, Vol.46, No.22, 9083-9090, 2013
Geometric and Edge Effects on Swelling-Induced Ordered Structure Formation in Polyelectrolyte Hydrogels
In this paper, we developed several kinds of ordered structures in hydrogels with different geometries and sizes by harnessing heterogeneous swelling induced mechanical instability, i.e., surface creasing, which leads to molecular orientations along the tensile direction. These hydrogels were synthesized by polymerization of a cationic monomer, N-[3-(N,N-dimethylamino)propyl] acrylamide methyl chloride quaternary (DMAPAA-Q) and a chemical cross-linker, in the presence of a small amount of the semirigid polyanion, poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT), as dopant. During the swelling process of as-prepared gels, surface creasing occurs and induces formation of a lattice-like periodic ordered structure, which is maintained in the swollen gels due to the formation of strong polyion complex. Besides this structure formed at the central part of gel sheets, PBDTs align parallel to the gel boundary at the edge of gels with a cuboid, disk, or ring shape. The size of the two regions with different structures and the size of each unit of lattice-like pattern are related to the geometry and size of the gels. The formation of different ordered structures was found due to the different mechanical instabilities at different parts of the gel during the heterogeneous swelling. This work presenting the creation of ordered structures in hydrogels by tuning the mechanical instability will pave the way to develop other functional structured materials and merit revealing the formation mechanism of ordered structures in soft biotissues during the nonequilibrium growth.