Langmuir, Vol.29, No.44, 13346-13351, 2013
Electro-(de)wetting on Superhydrophobic Surfaces
Usually, electrowetting on superhydrophobic surfaces (EWOSS) is generated by application of an alternating current signal and often leads to droplet impalement into the structuration. To avoid this phenomenon, superhydrophobic surfaces must show robustness to high pressure. Otherwise, an external energy has to be applied to dewet the droplet from the structuration. We present, in this article, an original approach to actuate liquid droplets via a modulated EWOSS signal (MEWOSS). This technique allows the dewetting of the droplet due to periodic vibrations induced by the electrowetting actuation. In that case, it is possible to investigate a larger range of superhydrophobic surfaces under EWOSS without droplet impalement. Three different superhydrophobic surfaces, showing different degrees of impalement under EWOSS, are investigated and compared using this MEWOSS technique.