Langmuir, Vol.29, No.34, 10665-10673, 2013
Anomalous Thermally Induced Pinning of a Liquid Drop on a Solid Substrate
The effect of substrate temperature on the wetting and spreading behavior of a UV ink monomer has been studied as a surrogate for the ink on four different substrates: DTC (digital top coat)-coated BOPP (biaxial oriented polypropylene), Flexo-coated BOPP, DTC-coated SGE (semigloss elite) paper, and Flexo-coated-SGE paper. Results show that the dynamic contact angles of the monomer decrease exponentially over time after contacting the surface, and the rate of spreading is consistently higher at 95 degrees C than at 22 degrees C. This observation indicates that spreading is controlled by the viscosity of the monomer as it decreases with temperature. An anomalous temperature effect is observed for the static contact angle on the DTC-coated BOPP substrate. The static contact angle at 95 degrees C is significantly larger than that at 22 degrees C (52 degrees versus 30 degrees). This is counterintuitive, as the surface tension of the monomer is shown to decease with increasing temperature. Microscopy (SEM and AFM) studies suggest that there is little interaction between the DTC coating solution and the BOPP substrate during the fast-drying coating process. This results in a smooth coated surface and, more importantly, voids between the BOPP nanofibers underneath the DTC coating. As the DTC-BOPP substrate is heated to 95 degrees C, fiber expansions occur. Microscopy results show that nanosized protrusions are formed on the DTC surface. We attribute it to fiber expansions in the vertical direction. Fiber expansions in the lateral direction causes little surface morphology change as the expanded materials only fill the voids laterally between the nanofiber network. We suggest that the protrusions on the surface create strong resistance to the wetting process and pin the monomer drop into a metastable wetting state. This interpretation is supported by the sliding angle and sessile drop height experiments: