화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.135, No.44, 16641-16650, 2013
Kinetics of Allosteric Transitions in S-adenosylmethionine Riboswitch Are Accurately Predicted from the Folding Landscape
Riboswitches are RNA elements that allosterically regulate gene expression by binding cellular metabolites. The SAM-III riboswitch, one of several classes that binds S-adenosylmethionine (SAM), represses translation upon binding SAM (OFF state) by encrypting the ribosome binding sequence. We have carried out simulations of the RNA by applying mechanical force (f) to the ends of SAM-III, with and without SAM, to get quantitative insights into the f-dependent structural changes. Force-extension (z) curves (FECs) for the apo (ON) state, obtained in simulations in which f is increased at a constant loading rate, show three intermediates, with the first one being the rupture of SAM binding region, which is greatly stabilized in the OFF state. Force-dependent free energy profiles, G(z,f), as a function of z, obtained in equilibrium constant force simulations, reveal the intermediates observed in FECs. The predicted stability difference between the ON and OFF states using G(z,f) is in excellent agreement with experiments. Remarkably, using G(z,f)s and estimate of an effective diffusion constant at a single value off allows us to predict the f-dependent transition rates using theory of first passage times for both the apo and holo states. To resolve the kinetics of assembly of SAM-III riboswitch in structural terms, we use force stretch-quench pulse sequences in which the force on RNA is maintained at a low (f(q)) value starting from a high value for a time period t(q). Variation of t(q) over a wide range results in resolution of elusive states involved in the SAM binding pocket and leads to accurate determination of folding times down to f(q) = 0. Quantitative measure of the folding kinetics, obtained from the folding landscape, allows us to propose that, in contrast to riboswitches regulating transcription, SAM-III functions under thermodynamic control provided the basal concentration of SAM exceeds a small critical value. All of the predictions are amenable to tests in single molecule pulling experiments.