Journal of Materials Science, Vol.48, No.24, 8571-8579, 2013
Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression
Approximately, 13.5 % of the standing volume of productive forest land in Sweden is covered by birch and aspen, which provides the vast potential to produce value-added products such as densified wood. This study shows whether it is possible to densify those species with a thermo-hygro-mechanical (THM) process using heat, steam, and pressure. In this process, transverse compression on thin European aspen (Populus tremula) and downy birch (Betula pubescens) boards was performed at 200 A degrees C with a maximum steam pressure of 550 kPa. To obtain a theoretical 50 % compression set, the press's maximum hydraulic pressure ranged from 1.5 to 7.3 MPa. Preliminary tests showed that similar to 75 % of the birch boards produced defects (blisters/blows) while only 25 % of the aspen boards did. Mainly, radial delamination associated with internal checks in intrawall and transwall fractures caused small cracks (termed blisters) while blows are characterized by relatively larger areas of delamination visible as a bumpy surface on the panel. Anatomical investigations revealed that birch was more prone to those defects than aspen. However, those defects could be minimized by increasing the pre-treatment time during the THM processing.