Journal of Materials Science, Vol.48, No.24, 8471-8482, 2013
Ce3+-doped Lu2Si2O7 luminescent fibers derived from electrospinning: facile preparation and flexible fiber molding
One-dimensional Lu2Si2O7:Ce3+ (LPS:Ce) luminescent fibers were prepared by the sol-gel process combined with electrospinning with polyvinyl butyral as polymer in this study. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, thermogravimetric and differential scanning calorimetry, Fourier transform infrared spectroscopy, photoluminescence, and kinetic decays were used to characterize the resulting samples. After calcinated at 1200 A degrees C, pure crystalline phase of Lu2Si2O7 was obtained with well maintenance of the fiber morphology. The excitation and emission curves of LPS:Ce samples are influenced by cerium-doping concentrations. LPS:0.5%Ce fibers show the most intense emission among the samples. A fast decay time of tens of nanosecond was also observed in LPS:Ce fibers. Furthermore, LPS:0.5%Ce powders and Y co-doped LPS:0.5%Ce fibers were also prepared in a similar way for comparison. As a result, LPS:0.5%Ce fibers present a much stronger emission and higher quantum efficiency than that of LPS:0.5%Ce powders, and a close efficiency compared with Y0.8Lu1.2Si2O7:0.5%Ce fibers. In addition, a facile and efficient fiber molding process can be realized to assemble one-dimensional LPS:Ce fibers into three-dimensional (3D) fibers structures with different shapes like bracelet and spool. Such 3D fiber structures are dense enough and well-shaped even if after high temperature calcination. The high performance LPS:Ce fibers and LPS:Ce 3D fibers may have great potential applications for luminescent clad sensors, optoelectronic devices, or scintillating detectors.