- Previous Article
- Next Article
- Table of Contents
Journal of Adhesion Science and Technology, Vol.27, No.24, 2727-2740, 2013
Temperature dependence of tack and pulse NMR analysis of polystyrene block copolymer/tackifier system
The influence of tackifier structure on the temperature dependence of tack for a polystyrene block copolymer/tackifier system was investigated. A blend of polystyrene-block-polyisoprene-block- polystyrene triblock and polystyrene-block-polyisoprene diblock copolymers was used as the base polymer. Four different tackifiers were used: special rosin ester resin (RE), rosin phenolic resin (RP), hydrogenated cyclo-aliphatic resin (HC), and aliphatic petroleum resin (C5). Tack at 20 degrees C increased with the tackifier content for both RE and HC tackifier systems. Tack is affected by two factors: the work of adhesion at the adherend interface and the viscoelastic properties of the adhesive. The good balance of these two factors brought high tack. The adhesive with 10 wt.% tackifier exhibited the highest tack at 20 degrees C, whereas those with 30 and 50 wt.% tackifier were lower than those systems with 10 wt.% of the RP or C5 tackifiers. The adhesive with overly high hardness lowered the work of adhesion and the tack was not improved with more than 30 wt.%. A compatibility test in toluene solution and in solid state showed that tackifier RE has good compatibility with both polyisoprene and polystyrene, whereas tackifier RP has lower compatibility. Tackifiers HC and C5 had good compatibility with polyisoprene, but poor compatibility with polystyrene, and that of C5 was poorer. Pulse nuclear magnetic resonance (NMR) analyses indicated that tackifiers RE and HC effectively restrict the molecular mobility of polyisoprene phase.