Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.2, 213-221, April, 1995
Vacuum Gas Oil 및 Carbazole에 의해 코크화된 Co-Mo/y-Al2O3 촉매의 활성저하에 대한 연구
Basic Studies of Deactivation of Co-Mo/γ-Al2O3 Catalysts Coked by Vacuum Gas Oil and Carbazole
초록
Co-Mo/γ-Al2O3 수소화처리(hydrotreating) 촉매를 vacuum gas oil (VGO)로 처리하여 코크화된 촉매를 제조하고 이들의 촉매활성 및 물성을 조사하였다. 또한 VGO에 carbazole(C12H9N)을 첨가하여 코크화된 촉매를 제조하고 질소화합물 효과에 의한 촉매의 물성 및 활성의 변화에 대해서 조사하였다. 반응온도와 반응시간이 증가함에 따라 촉매에 침적된 코크의 양은 증가하는 경향을 보여 주었고 코크의 양이 증가할수록 촉매의 비표면적과 기공부피는 크게 감소하였다. 코킹되지 않은 촉매(fresh catalyst)의 활성은 HDS(수첨탈황반응) > CNH(탄소-질소수첨분해반응) > HYD(수소화반응) > HDN(수첨탈질소반응)의 순서이고, VGO의 처리에 의해서 코크화된 촉매의 활성은 침적된 코크의 양이 증가함에따라 크게 감소하였다. 반응별로 활성 감소는 HDN(수첨탈질소반응) > CNH(탄소-질소수첨분해반응) > HYD(수소화반응) > HDS(수첨탈황반응)의 순으로 일어났다. VGO와 carbazole의 처리에 의해 코크화된 촉매의 활성은 VGO의 처리에 의해 코크화된 촉매의 활성보다 모든 반응에 대하여 크게 감소하였고, 이 결과는 질소화합물에 의한 기공입구의 막힘 현상이 두드러져 VGO와 carbazole의 처리에 의해 코크화된 촉매의 비표면적과 기공 부피의 급격한 감소로 설명할 수 있다.
A series of coked catalysts were prepared with Co-Mo/γ-Al2O3 hydrotreating catalyst by reacting with vacuum gas oil. The physical properties and catalytic activities of these coked catalysts were examined. A similar series of coked catalysts were prepared wish carbazole added to vacuum gas oil, and the changes of physical properties and catalytic activities by nitrogen compounds were also examined. It was found that the amount of coke deposited on the surface of catalyst increases with increase of reaction temperature and reaction time. As amounts of coke increases, pore volume and surface area decrease significantly. The order of reactivity of the fresh catalyst was : HDS > CNH >HYD >HDN. As the amount of coke increases, VGO-coked catalyst shows deactivation as order of HDN > CNH > HYD > HDS. Carbazole-coked catalyst shows much more deactivation in all reaction fuctionalities compared to the VGO-coked catalyst. Surface area and pore volume of carbazole-coked catalyst decrease much more than VGO-coked catalyst. These results can be explained as the server plugging of pore mouth by the deposition of nitrogen compounds.
- Girgis MJ, Gates BC, Ind. Eng. Chem. Res., 30, 2021 (1991)
- Katzer JR, Silvasubramanian R, Catal. Rev.-Sci. Eng., 20(2), 155 (1979)
- Sundaram KM, Katzer JR, Bischipp KB, Chem. Eng. Commun., 71, 53 (1988)
- Ho TC, Catal. Rev.-Sci. Eng., 30, 117 (1988)
- Muegge B, Massoth FE, Fuel Process. Technol., 29, 19 (1991)
- Yamamoto Y, Kumara F, Massoth FE, Fuel Process. Technol., 19, 253 (1988)
- Houlla M, Nag NK, Sapre AV, Broderick DH, Gates BC, AIChE J., 24, 1015 (1978)
- Sapre AV, Gates BC, Ind. Eng. Chem. Process Des. Dev., 20, 68 (1981)
- Massoth FE, Balusami K, Shabtai J, J. Catal., 122, 256 (1990)
- MacIver DS, Tobin HH, Barth RT, J. Catal., 2, 485 (1963)
- Massoth FE, Ind. Eng. Chem. Process Des. Dev., 6, 200 (1967)
- Dobychin DP, Kachur LA, Zhur. Priklad Khim., 33, 514 (1960)
- Haldeman RG, Botty MC, J. Phys. Chem., 63, 489 (1959)
- Massoth FE, Fuel Process. Technol., 4, 53 (1981)
- Muegge BD, Massoth FE, Fuel Process. Technol., 29, 19 (1991)
- Massoth FE, Muralidhar G, "Chemistry and Uses of Molybdenum," ed. H.F. Barry and P.C.H. Mitchell, Hydrodesulfurization Catalysis Proc. Fourth Intern. Conf., 343, Ann Arbor, Michigan (1982)