Canadian Journal of Chemical Engineering, Vol.91, No.11, 1800-1808, 2013
PREDICTION OF MINIMUM SPOUTING VELOCITY BY CFD-TFM: APPROACH DEVELOPMENT
A three-dimensional (3D) Eulerian-Eulerian multiphase model (two-fluid model, TFM) was developed to predict the minimum spouting velocity (u(ms)) of spouted beds, with the aid of UBC experiments in a 152-mm conical-cylindrical vessel. The gas motion was simulated by the k-E two-equation turbulent model, while the particle phase motion was estimated from the kinetic theory of granular flow. The inlet minimum spouting velocity, u(ms), was numerically predicted by visual observations and analysis of simulated distributions of the solid volume fraction and particle vector field for decreasing gas flow. The effects of particle diameter, static bed height and fluid inlet diameter on u(ms) were checked, in order to confirm the validity of the present developed method. In addition, numerical predictions are compared with the predicted values from several empirical correlations reported in the open literature. Best congruence is with the popular Mathur-Gishler equation.