- Previous Article
- Next Article
- Table of Contents
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.1, 165-174, February, 1995
우레탄기를 포함하는 디아민/벤조퀴논 중합체의 합성과 특성분석(II)-고분자량의 유연성 연쇄를 갖는 디아민의 영향-
The Synthesis and Characterization of Diamine/Benzoquinone Polymer Containing Urethane Group (Ⅱ) -The Effect of Diamine with Flexible Polymeric Chain-
초록
우레탄기를 함유한 고분자량의 디아민을 사용하여 유연성을 향상시킨 벤조퀴논/디아민 중합체를 합성하고 그에 따른 특성분석을 행하였다. 먼저 고분자량의 디아민은 평균 분자량이 750∼2000 사이의 3종의 서로 다른 폴리올을 MDI와 반응시켜 NCO-Prepolymer를 합성한 다음 말단의 NCO기를 아민화시켜 제조하였다. 폴리올류로는 옥시 알킬기 구조가 서로 다른 PPG, PTMG 및 PTMCG를 사용하였으며 NCO:OH의 반응 몰비는 2.1:1로부터 1.4:1까지 다양하게 변화시켜가며 합성하였다. 벤조퀴논:디아민의 몰비는 3:1로 고정하여 분자구조와 분자량이 각기 다른 9종의 퀴논/디아민 중합체를 합성하였으며 각각의 중합체에 대하여 구조분석, 열분석 및 분자량분석과 용해도측정을 행하였다. 아울러 이들 중합체와 NCO-Prepolymer를 반응시켜 가교된 퀴톤/디아민 중합체를 합성하여 각각의 함수율과 XRD분석을 통해 분자량 변화에 따른 결정성 및 UTM을 통한 기계적 물성도 고찰하였다.
Benzoquinone/diamine polymers were synthesized from reaction of flexible polymeric diamines containing urethane group with p-benzoquinone. Polymeric diamines were obtained from the decarboxylation of NCO-terminated prepolymer prepared by the reaction of MDI and polyols with average molecular weight range of 750 ∼2000. PPG, PTMG, PTMCG with different molecular structure and molecular weight were used as polyols and reaction mole ratio of NCO : OH were changed from 2.1 : 1 to 1.4 : 1 for NCO-terminated prepolymer preparation. And quinone/diamine polymers were prepared by the reaction of 1 mole of diamine with 3 mole of p-benzoquinone. For these 9 different quinone/diamine polymers, characterization of molecular weights, solubilities, thermal properties and molecular structure were carried out. Additionally, crosslinked quinone/diamine polymers were synthesized from reaction of quinone/diamine polymers with NCO-Prepolymer. The effects of molecular weights of crosslinked polymers on the degree of water absorption, crystallinity and mechanical properties were investigated.
- Kaleem K, Chertok F, Erhan S, Prog. Org. Coat., 15, 63 (1987)
- Kaleem K, Chertok F, Erhan S, Angew. Makromol. Chem., 55, 31 (1987)
- Kaleem K, Chertok F, Erhan S, J. Polym. Sci. A: Polym. Chem., 27, 865 (1989)
- Kaleem K, Chertok F, Erhan S, New Polym. Mater., 1, 265 (1990)
- Nithianandam VS, Kaleem K, Chertok F, Erhan S, J. Appl. Polym. Sci., 42, 2893 (1991)
- Reddy TA, Erhan S, J. Polym. Sci. A: Polym. Chem., 32(3), 557 (1994)
- Soriaga MP, Hubbard AT, J. Am. Chem. Soc., 104, 2735 (1982)
- Nithianandam VS, Kaleem K, Chertok F, Erhan S, J. Appl. Polym. Sci., 42, 2893 (1991)
- Nithianandam VS, Erhan S, J. Appl. Polym. Sci., 42, 2385 (1991)
- Nishianandam VS, Erhan S, Polymer, 32, 1146 (1991)
- Kaleem K, Chertok F, Erhan S, Nature, 325, 328 (1987)
- Speliotis D, IEEE Trans. Magn., 26, 124 (1990)
- Yamamoto Y, Sumiya K, Miyake A, Kishimoto M, Taniguchi T, IEEE Trans. Magn., 26, 2098 (1990)
- VanBogart JWC, Lilaontitkul A, Cooper SL, "Multiphase Polymer," Cooper, S.L., and Estes, G.M., Eds., ACS Advances in Chemistry Series, 17, Washington D.C., 1 (1979)
- Jacques CHM, Klempner DK, Frisch KC, "Polymer Alloys," Plenum Press, New York, 287 (1977)
- Blackwell J, Lee CD, J. Polym. Sci. B: Polym. Phys., 21, 2169 (1983)
- Cuve L, Pascault JP, Boiteux G, Polymer, 33, 3957 (1992)
- Mathur MCA, Hudson GF, Hackett LD, IEEE Trans. Magn., 28, 2362 (1992)
- Parker MR, Venkateram S, Desmet D, IEEE Trans. Magn., 28, 2368 (1992)
- Kim JH, Noh ST, Kim DK, Lee CG, J. Korean Ind. Eng. Chem., 4(4), 814 (1993)