화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.1, 165-174, February, 1995
우레탄기를 포함하는 디아민/벤조퀴논 중합체의 합성과 특성분석(II)-고분자량의 유연성 연쇄를 갖는 디아민의 영향-
The Synthesis and Characterization of Diamine/Benzoquinone Polymer Containing Urethane Group (Ⅱ) -The Effect of Diamine with Flexible Polymeric Chain-
초록
우레탄기를 함유한 고분자량의 디아민을 사용하여 유연성을 향상시킨 벤조퀴논/디아민 중합체를 합성하고 그에 따른 특성분석을 행하였다. 먼저 고분자량의 디아민은 평균 분자량이 750∼2000 사이의 3종의 서로 다른 폴리올을 MDI와 반응시켜 NCO-Prepolymer를 합성한 다음 말단의 NCO기를 아민화시켜 제조하였다. 폴리올류로는 옥시 알킬기 구조가 서로 다른 PPG, PTMG 및 PTMCG를 사용하였으며 NCO:OH의 반응 몰비는 2.1:1로부터 1.4:1까지 다양하게 변화시켜가며 합성하였다. 벤조퀴논:디아민의 몰비는 3:1로 고정하여 분자구조와 분자량이 각기 다른 9종의 퀴논/디아민 중합체를 합성하였으며 각각의 중합체에 대하여 구조분석, 열분석 및 분자량분석과 용해도측정을 행하였다. 아울러 이들 중합체와 NCO-Prepolymer를 반응시켜 가교된 퀴톤/디아민 중합체를 합성하여 각각의 함수율과 XRD분석을 통해 분자량 변화에 따른 결정성 및 UTM을 통한 기계적 물성도 고찰하였다.
Benzoquinone/diamine polymers were synthesized from reaction of flexible polymeric diamines containing urethane group with p-benzoquinone. Polymeric diamines were obtained from the decarboxylation of NCO-terminated prepolymer prepared by the reaction of MDI and polyols with average molecular weight range of 750 ∼2000. PPG, PTMG, PTMCG with different molecular structure and molecular weight were used as polyols and reaction mole ratio of NCO : OH were changed from 2.1 : 1 to 1.4 : 1 for NCO-terminated prepolymer preparation. And quinone/diamine polymers were prepared by the reaction of 1 mole of diamine with 3 mole of p-benzoquinone. For these 9 different quinone/diamine polymers, characterization of molecular weights, solubilities, thermal properties and molecular structure were carried out. Additionally, crosslinked quinone/diamine polymers were synthesized from reaction of quinone/diamine polymers with NCO-Prepolymer. The effects of molecular weights of crosslinked polymers on the degree of water absorption, crystallinity and mechanical properties were investigated.
  1. Kaleem K, Chertok F, Erhan S, Prog. Org. Coat., 15, 63 (1987) 
  2. Kaleem K, Chertok F, Erhan S, Angew. Makromol. Chem., 55, 31 (1987)
  3. Kaleem K, Chertok F, Erhan S, J. Polym. Sci. A: Polym. Chem., 27, 865 (1989) 
  4. Kaleem K, Chertok F, Erhan S, New Polym. Mater., 1, 265 (1990)
  5. Nithianandam VS, Kaleem K, Chertok F, Erhan S, J. Appl. Polym. Sci., 42, 2893 (1991) 
  6. Reddy TA, Erhan S, J. Polym. Sci. A: Polym. Chem., 32(3), 557 (1994) 
  7. Soriaga MP, Hubbard AT, J. Am. Chem. Soc., 104, 2735 (1982) 
  8. Nithianandam VS, Kaleem K, Chertok F, Erhan S, J. Appl. Polym. Sci., 42, 2893 (1991) 
  9. Nithianandam VS, Erhan S, J. Appl. Polym. Sci., 42, 2385 (1991) 
  10. Nishianandam VS, Erhan S, Polymer, 32, 1146 (1991) 
  11. Kaleem K, Chertok F, Erhan S, Nature, 325, 328 (1987) 
  12. Speliotis D, IEEE Trans. Magn., 26, 124 (1990) 
  13. Yamamoto Y, Sumiya K, Miyake A, Kishimoto M, Taniguchi T, IEEE Trans. Magn., 26, 2098 (1990) 
  14. VanBogart JWC, Lilaontitkul A, Cooper SL, "Multiphase Polymer," Cooper, S.L., and Estes, G.M., Eds., ACS Advances in Chemistry Series, 17, Washington D.C., 1 (1979)
  15. Jacques CHM, Klempner DK, Frisch KC, "Polymer Alloys," Plenum Press, New York, 287 (1977)
  16. Blackwell J, Lee CD, J. Polym. Sci. B: Polym. Phys., 21, 2169 (1983)
  17. Cuve L, Pascault JP, Boiteux G, Polymer, 33, 3957 (1992) 
  18. Mathur MCA, Hudson GF, Hackett LD, IEEE Trans. Magn., 28, 2362 (1992) 
  19. Parker MR, Venkateram S, Desmet D, IEEE Trans. Magn., 28, 2368 (1992) 
  20. Kim JH, Noh ST, Kim DK, Lee CG, J. Korean Ind. Eng. Chem., 4(4), 814 (1993)