화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.97, No.20, 9121-9131, 2013
In vivo efficacy and synergistic interaction of 16 alpha-hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide, a clerodane diterpene from Polyalthia longifolia against methicillin-resistant Staphylococcus aureus
The Staphylococcus aureus bacterium, a nosocomial pathogen often causing untreatable and lethal infection in patients, mutated to become resistant to all the first-line drugs. The present study details the potential of clerodane diterpene 16 alpha-hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide (CD) isolated from Polyalthia longifolia against methicillin-resistant S. aureus (MRSA) through in vitro and in vivo assays. Minimum inhibitory concentration (MIC) of CD exhibited significant anti-MRSA activity (15.625-31.25 mg/l) against reference strain and seven clinical isolates, while time kill assays at graded MICs indicated 2.78-9.59- and 2.9-6.18-fold reduction in growth of reference strain and clinical isolates of S. aureus, respectively. The combined effect of the CD and 7.5 % NaCl resulted in significant reduction in microbial count within 24 h, indicating the loss of the salt tolerance ability of S. aureus. Further, release of 260-nm absorbing material and flow cytometric analysis revealed an increased uptake of propidium iodide. These assays may indicate the membrane-damaging potential of CD. The molecule CD was found to interact synergistically with clinically used antibiotics (FICI a parts per thousand currency signaEuro parts per thousand 0.5) against all clinical isolates. In infected mice, CD significantly (P < 0.001) lowered the systemic microbial load in blood, liver, kidney, lung and spleen tissues and did not exhibit any significant toxicity at 100 mg/kg body weight.