Applied Biochemistry and Biotechnology, Vol.171, No.1, 72-79, 2013
Yeasts and Lactic Acid Bacteria Mixed-Specie Biofilm Formation is a Promising Cell Immobilization Technology for Ethanol Fermentation
We previously found that some Saccharomyces cerevisiae and Lactobacillus plantarum remarkably formed mixed-specie biofilm in a static co-culture and deduced that this biofilm had potential as immobilized cells. We investigated the application of mixed-specie biofilm formed by S. cerevisiae BY4741 and L. plantarum HM23 for ethanol fermentation in repeated batch cultures. This mixed-specie biofilm was far abundantly formed and far resistant to washing compared with S. cerevisiae single biofilm. Adopting mixed-specie biofilm formed on cellulose beads as immobilized cells, we could produce enough ethanol from 10 or 20 % glucose during ten times repeated batch cultures for a duration of 10 days. Cell numbers of S. cerevisiae and L. plantarum during this period were stable. In mixed-specie biofilm system, though ethanol production was slightly lower compared to S. cerevisiae single-culture system due to by-production of lactate, pH was stably maintained under pH 4 without artificial control suggesting high resistance to contamination. Inoculated model contaminants, Escherichia coli and Bacillus subtilis, were excluded from the system in a short time. From the above results, it was indicated that the mixed-specie biofilm of S. cerevisiae and L. plantarum was a promising immobilized cell for ethanol fermentation for its ethanol productivity and robustness due to high resistance to contamination.