화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.25, No.4, 227-231, November, 2013
Viscosity properties of gelatin in solutions of monovalent and divalent Salts
E-mail:
The viscosity behaviors of gelatin with and without salts were examined in details by a rotational viscometer and a horizontal gravitational capillary viscometer, ranging from extremely dilute to entangled regimes. It was found that gelatin in salt free solution behaviors as neutral polymer in θ solvent. Polyelectrolyte effect can be found in extremely dilute regime. For gelatin/NaCl solution, the concentration dependence of specific viscosity showed that gelatin behaviors as neutral polymer in good solvent. The two critical concentration c* and ce of gelatin solutions with and without NaCl moved from 4.0 wt% and 14.0 wt% to 2.0 wt% and 12.0 wt%, respectively. Addition of salts can improve the gelatin viscosity. It is the characteristic of a polyampholyte. The viscosity increased more significantly in CaCl2 than that in NaCl solutions. Moreover, the effect of Ca2+ is notable in gelatin solution with high concentrations, especially in entangled solutions.
  1. Antonietti M, Briel A, Forster S, J. Chem. Phys., 105(17), 7795 (1996)
  2. Ashok B, Muthukumar M, J. Phys. Chem. B, 113(17), 5736 (2009)
  3. Bohidar HB, Int. J. Biol. Macromol., 23, 1 (1998)
  4. Brodowski G, Horvath A, Ballauff M, Rehahn M, Macromolecules, 29(21), 6962 (1996)
  5. Chun MS, Kim C, Lee DE, Phys. Rev. E., 051919.1-10, 79 (2009)
  6. Chun MS, Ko MJ, J. Korean Phys. Soc., 61, 1108 (2012)
  7. Colby RH, Rheol. Acta, 49(5), 425 (2010)
  8. Dautzenberg H, Jaeger W, Kotz J, Philipp B, Seidel C, Stscherbina D, Polyelectrolytes: Formation, Characterization and Application, Hanser, Munich (1994)
  9. Dobrynin AV, Colby RH, Rubinstein M, Macromolecules, 28(6), 1859 (1995)
  10. Grosberg AY, Nguyen TT, Shklovskii BI, Rev. Mod. Phys., 74, 329 (2002)
  11. Guo L, Colby RH, Lusignan CP, Howe AM, Macromolecules, 36(26), 10009 (2003)
  12. Hara M, Polyelectrolytes: Science and Technology, Dekker, New York (1993)
  13. Hsiao PY, Luijten E, Phys. Rev.Lett., 148301.1-4., 97 (2006)
  14. Jia PX, Zhao J, J. Chem. Phys., 231103.1-4., 131 (2009)
  15. Katchalsky A, J. Polym. Sci., 7, 393 (1951)
  16. Kozlov PV, Burdygina GI, Polymer., 24, 651 (1983)
  17. Kundagrami A, Muthukumar M, J. Chem. Phys., 244901.1-16., 128 (2008)
  18. Li Y, Cheng RS, J. Polym. Sci. B: Polym. Phys., 44(13), 1804 (2006)
  19. Mandel M, Polyelectrolytes., Reidel, Dordrecht. (1988)
  20. Mandel M, In Polyelectrolytes; Science and Technology., Hara M, Ed., Marcel Dekker, New York (1993)
  21. Olivares ML, Peirotti MB, Deiber JA, Food Hydrocolloids., 20, 1039 (2006)
  22. Pu Q, Ng S, Mok V, Chen SB, J. Phys. Chem. B, 108(37), 14124 (2004)
  23. Sharma R, Das B, Nandi P, Das C, J. Polym. Sci. B: Polym. Phys., 48(11), 1196 (2010)
  24. Stainsby G, Nature., 169, 662 (1952)
  25. Trotsenko O, Roiter Y, Minko S, Langmuir, 28(14), 6037 (2012)
  26. Wulansari R, Mitchell JR, Blanshard JMV, Paterson JL, Food Hydrocolloids., 12, 245 (1998)
  27. Wyatt NB, Liberatore MW, J. Appl. Polym. Sci., 114(6), 4076 (2009)
  28. Wyatt NB, Liberatore MW, Soft Matter., 6, 3346 (2010)
  29. Wyatt NB, Gunther CM, Liberatore MW, Polymer, 52(11), 2437 (2011)
  30. Yuan XJ, Qiao CD, Li JY, Zhang HY, Li TD, J. Macromol. Sci. Phys., 50, 1481 (2011)
  31. Zirnsak MA, Boger DV, Tirtaatmadja V, J. Rheol., 43(3), 627 (1999)