Korea-Australia Rheology Journal, Vol.25, No.4, 227-231, November, 2013
Viscosity properties of gelatin in solutions of monovalent and divalent Salts
E-mail:
The viscosity behaviors of gelatin with and without salts were examined in details by a rotational viscometer and a horizontal gravitational capillary viscometer, ranging from extremely dilute to entangled regimes. It was found that gelatin in salt free solution behaviors as neutral polymer in θ solvent. Polyelectrolyte effect can be found in extremely dilute regime. For gelatin/NaCl solution, the concentration dependence of specific viscosity showed that gelatin behaviors as neutral polymer in good solvent. The two critical concentration c* and ce of gelatin solutions with and without NaCl moved from 4.0 wt% and 14.0 wt% to 2.0 wt% and 12.0 wt%, respectively. Addition of salts can improve the gelatin viscosity. It is the characteristic of a polyampholyte. The viscosity increased more significantly in CaCl2 than that in NaCl solutions. Moreover, the effect of Ca2+ is notable in gelatin solution with high concentrations, especially in entangled solutions.
- Antonietti M, Briel A, Forster S, J. Chem. Phys., 105(17), 7795 (1996)
- Ashok B, Muthukumar M, J. Phys. Chem. B, 113(17), 5736 (2009)
- Bohidar HB, Int. J. Biol. Macromol., 23, 1 (1998)
- Brodowski G, Horvath A, Ballauff M, Rehahn M, Macromolecules, 29(21), 6962 (1996)
- Chun MS, Kim C, Lee DE, Phys. Rev. E., 051919.1-10, 79 (2009)
- Chun MS, Ko MJ, J. Korean Phys. Soc., 61, 1108 (2012)
- Colby RH, Rheol. Acta, 49(5), 425 (2010)
- Dautzenberg H, Jaeger W, Kotz J, Philipp B, Seidel C, Stscherbina D, Polyelectrolytes: Formation, Characterization and Application, Hanser, Munich (1994)
- Dobrynin AV, Colby RH, Rubinstein M, Macromolecules, 28(6), 1859 (1995)
- Grosberg AY, Nguyen TT, Shklovskii BI, Rev. Mod. Phys., 74, 329 (2002)
- Guo L, Colby RH, Lusignan CP, Howe AM, Macromolecules, 36(26), 10009 (2003)
- Hara M, Polyelectrolytes: Science and Technology, Dekker, New York (1993)
- Hsiao PY, Luijten E, Phys. Rev.Lett., 148301.1-4., 97 (2006)
- Jia PX, Zhao J, J. Chem. Phys., 231103.1-4., 131 (2009)
- Katchalsky A, J. Polym. Sci., 7, 393 (1951)
- Kozlov PV, Burdygina GI, Polymer., 24, 651 (1983)
- Kundagrami A, Muthukumar M, J. Chem. Phys., 244901.1-16., 128 (2008)
- Li Y, Cheng RS, J. Polym. Sci. B: Polym. Phys., 44(13), 1804 (2006)
- Mandel M, Polyelectrolytes., Reidel, Dordrecht. (1988)
- Mandel M, In Polyelectrolytes; Science and Technology., Hara M, Ed., Marcel Dekker, New York (1993)
- Olivares ML, Peirotti MB, Deiber JA, Food Hydrocolloids., 20, 1039 (2006)
- Pu Q, Ng S, Mok V, Chen SB, J. Phys. Chem. B, 108(37), 14124 (2004)
- Sharma R, Das B, Nandi P, Das C, J. Polym. Sci. B: Polym. Phys., 48(11), 1196 (2010)
- Stainsby G, Nature., 169, 662 (1952)
- Trotsenko O, Roiter Y, Minko S, Langmuir, 28(14), 6037 (2012)
- Wulansari R, Mitchell JR, Blanshard JMV, Paterson JL, Food Hydrocolloids., 12, 245 (1998)
- Wyatt NB, Liberatore MW, J. Appl. Polym. Sci., 114(6), 4076 (2009)
- Wyatt NB, Liberatore MW, Soft Matter., 6, 3346 (2010)
- Wyatt NB, Gunther CM, Liberatore MW, Polymer, 52(11), 2437 (2011)
- Yuan XJ, Qiao CD, Li JY, Zhang HY, Li TD, J. Macromol. Sci. Phys., 50, 1481 (2011)
- Zirnsak MA, Boger DV, Tirtaatmadja V, J. Rheol., 43(3), 627 (1999)