화학공학소재연구정보센터
Macromolecular Research, Vol.21, No.10, 1059-1068, October, 2013
Metal complexation of aromatic oligoazomethines bearing cyano groups: An optical and electrochemical study
E-mail:
Two new oligoazomethines containing 2,5-diamino-3,4-dicyanothiophene as central unit and, triphenylamine or carbazole at both ends, were characterized in terms of metal ions complexation ability. The influence of various metal ions on their optical properties was investigated by UV-vis and photoluminescence measurements. For both oligomers the presence of ions such as Cu2+, Sn2+, and Hg2+ causes significant modifications of the absorption and emission spectra. The hypsochromic shift of the long wavelength can be correlated with the existence of new coordination complex species that decrease the conjugation pathway. Sn2+ ions act as emission intensifier for both oligomers. Hg2+ ions act as emission quencher for triphenylamine-containing oligoazomethine, while for carbazoleoligoazomethine acts as emission intensifier. The presence of the metal ions in high concentration (9×10^(-4) M) significantly modifies in time, the colour of the oligomers solutions, and this can be observed even with the naked eye. The cyclic voltammograms recorded after the addition of metal ions revealed new redox peaks which can be assigned to the presence of metal ions- oligoazomethine complexes. The studied oligoazomethines can be employed as selective and sensitive chemosensors for Hg2+, Cu2+, and Sn2+ ions.
  1. Caballero A, Martinez R, Lloveras V, Ratera I, Vidal-Gancedo J, Wurst K, Tarraga A, Molina P, Veciana J, J. Am. Chem. Soc., 127(45), 15666 (2005)
  2. Cui Y, Chen Q, Zhang DD, Cao J, Han BH, J. Polym. Sci. A: Polym. Chem., 48(6), 1310 (2010)
  3. Yang B, Li GZ, Zhang X, Shu X, Wang AN, Zhu XQ, Zhu J, Polymer, 52(12), 2537 (2011)
  4. Sankar J, Sasanka D, Akhtarul AM, Nikhil G, J. Photochem. Photobiol. A-Chem., 238, 7 (2012)
  5. Kimoto A, Tajima Y, ACS Macro Lett., 1, 667 (2012)
  6. Marcu M, Cazacu M, Vlad A, Racles C, Appl. Organomet. Chem., 17, 693 (2003)
  7. Montazerozohori M, Sedighipoor M, Joohari S, Int. J. Electrochem. Sci., 7, 77 (2012)
  8. Cho EJ, Moon JW, Ko SW, Lee JY, Kim SK, Yoon J, Nam KC, J. Am. Chem. Soc., 125(41), 12376 (2003)
  9. Carballo R, Casas JS, Garcia-Martinez E, Pereiras-Gabian G, Sanchez A, Sordo J, Vazquez-Lopez EM, Garcia-Monteagudo JC, Abram U, J. Organomet. Chem., 656, 1 (2002)
  10. Cheng K, Zheng QZ, Qian Y, Shi L, Zhao J, Zhu HL, Bioorg. Med. Chem., 17, 7861 (2009)
  11. Mustafa Y, Askina K, Basran D, J. Serb. Chem. Soc., 72, 215 (2007)
  12. Parekh HM, Patel MN, Russian J. Coord. Chem., 32, 431 (2006)
  13. Jesmin M, Ali M, Khanam JA, Thai J. Pharm. Sci., 34, 20 (2010)
  14. Guarin SAP, Skene WG, Mater. Lett., 61, 5102 (2007)
  15. El-Shekeil A, Al-Khader M, Abu-Bakr AO, Synth. Met., 143, 147 (2004)
  16. Khalid MA, El-Shekeil AG, Al-Yusufy FA, Eur. Polym. J., 37, 1423 (2001)
  17. Sek D, Iwan A, Kaczmarczyk B, Jarzabek B, Kasperczyk J, Bednarski H, High Perform. Polym., 19, 401 (2007)
  18. Grigoras M, Stafie L, Des. Monomers Polym., 12, 177 (2009)
  19. Niu H, Kang H, Cai J, Wang C, Bai X, Wang W, Polym. Chem., 2, 2804 (2011)
  20. Kauffmann JM, Vire JC, Anal. Chim. Acta., 273, 329 (1993)
  21. Wang J, Ed., Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine, Wiley-VCH, New York, 1988.
  22. Kissinger PT, Heineman WR, Laboratory Techniques in Electroanalytical Chemistry, 2nd ed, Marcel Dekker, New York, 1996.
  23. Bakr MF, J. Chin. Chem. Soc., 50, 339 (2003)
  24. Ranjohn N, in Organic Synthesis, John Wiley, New York, 1963, Coll. Vol. IV, p 243.
  25. Vacareanu L, Ivan T, Grigoras M, High Perform. Polym., 24, 717 (2012)