Applied Chemistry for Engineering, Vol.24, No.5, 551-557, October, 2013
티올화된 탄소나노튜브 전극을 이용한 카드뮴과 납의 전기화학적 분석
Electrochemical Evaluation of Cadmium and Lead by Thiolated Carbon Nanotube Electrodes
E-mail:
초록
본 연구에서는 환경오염을 발생시키는 위험한 중금속 물질들인 카드뮴과 납의 검출 능력을 향상시키기 위해, 순수한 탄소나노튜브(p-CNT) 전극 및 티올화된 탄소나노튜브(t-CNT) 전극을 이용하여 카드뮴과 납 금속의 민감도를 평가하였다. 또한, 두 금속이 동시에 포함되어 있을 때의 상호작용 반응기작을 분석하였다. 이를 위해, 네모파 벗김전압전류법이 이용되었는데, 두 CNT 전극에서 모두 네모파 벗김전압전류법의 최적조건으로, 30 Hz의 주파수, -1.2 V vs. Ag/AgCl의 석출전위 및 300 s의 석출시간이 결정되었다. 민감도 측면에서 카드뮴과 납 모두 t-CNT 전극에서 p-CNT 전극보다 더 좋은 결과를 얻었다. 두 금속의 센서민감도를 각각 측정하였을 때, 카드뮴의 경우 p-CNT 및 t-CNT 전극에서 3.1 μA/μM 및 4.6 μA/μM의 센서 민감도를 보였고, 납의 경우 p-CNT 및 t-CNT 전극에서 6.5 μA/μM 및 9.9 μA/μM였다. p-CNT 전극에서 t-CNT 전극보다 센서민감도가 좋은 이유는, CNT에 티올기를 적용시키면서 금속이온의 반응속도가 증가되기 때문이다. 두 금속을 동시에 넣고 민감도를 측정할 경우, 전극에 관계없이 납의 센서민감도가 카드뮴의 센서 민감도보다 우수하였다. 납과 카드뮴 중 납의 센서 민감도가 우수한 이유는 납의 표준전극전위가 낮아 산화반응성이 우수하여 카드뮴보다 더 먼저 전극위에 석출되어, 벗김반응시에 표면에서 떨어져 나가기 쉽기 때문이다.
In the present study, pristine carbon nanotube (p-CNT) and thiolated carbon naotube (t-CNT) electrodes were investigated to improve their detectabilities for cadmium (Cd) and lead (Pb). In addition, we evaluate which reaction mechanism is used when the electrolyte contains both Cd and Pb metals. Square wave stripping was employed for analyzing the sensitivity for the metals. A frequency of 30 Hz, a deposition potential of -1.2 V vs. Ag/AgCl and a deposition time of 300 s were used as optimal SWSV parameters. t-CNT electrodes show the better sensitivity for both Cd and Pb metals than that of p-CNT electrodes. In case of Cd, sensitivities of p-CNT and t-CNT electrodes were 3.1 μA/μM and 4.6 μA/μM, respectively, while the sensitivities for Pb were 6.5 μA/μM (p-CNT) and 9.9 μA/μM (t-CNT), respectively. The better sensitivity of p-CNT electrodes
is due to the enhancement in the reaction rate of metal ions that are facilitated by thiol groups attached on the surface of CNT. When sensitivity was measured for the detection of Cd and Pb metals present simultaneously in the electrolyte, Pb indicates better sensitivity than Cd irrespective of electrode types. It is ascribed to the low standard electrode potential of Pb, which then promotes the possibility of oxidation reaction of the Pb metal ions. In turn, the Pb metal ions are deposited on the electrode surface faster than that of Cd metal ions and cover the electrode surface during deposition step, and thus Pb metals that cover the large portion of the surface are more easily stripped than that of Cd metals during stripping step.
- British Medical Bulletin., Department of Epidemiology and Public Health, Imperial College, London, UK, Hazards of heavy metal contamination, 68, 167 (2003)
- Duruibe JO, Ogwuegbu MOC, Egwurugwu JN, Int. J. Physical Sci., 2, 112 (2007)
- Bernard A, Lauwerys R, Experientia., 40, 143 (1984)
- Satarug S, Melissa R, Haswell-Elkins, Moore MR, Br. J. Nutrition., 84, 791 (2000)
- Seregin IV, Ivanov VB, Russ. J. Plant. Physiol., 48, 523 (2001)
- Silbergeld EK, Environ. Health. Perspect., 91, 63 (1991)
- Baldes MS, Mar. Biol., 25, 177 (1974)
- Hernandez PB, Hernandez AR, Galvan M, Romoc MR, Pardave MP, Silva MTR, Spectrochim. Acta., 66, 68 (2007)
- Teixeira LSG, Rocha RBS, Sobrinho EV, Guimaraes PRB, Pontes LAM, Teixeira JSR, Talanta., 72, 1073 (2007)
- Dai X, Nekrassova O, Hyde ME, Compton RG, Anal. Chem., 76, 5924 (2004)
- Shin SH, Hong HG, Bull.Korean Chem. Soc., 31, 3077 (2010)
- Li H, Smart RB, Anal. Chim. Acta., 325, 25 (1996)
- Wang J, Lu J, Hocevar SB, Farias PAM, Anal. Chem., 72, 3218 (2000)
- Luo H, Shi Z, Li N, Gu Z, Zhuang Q, Anal. Chem., 73, 915 (2001)
- Sancara I, Prior C, Hocevar SB, Wang J, Electroanalysis., 22, 1405 (2010)
- Tasis D, Tagmatarchis N, Bianco A, Prato M, Chem. Rev., 106(3), 1105 (2006)
- You JM, Kim D, Jeon S, Electrochim. Acta., 65, 288 (2012)
- You JM, Jeong YN, Ahmed MS, Kim SK, Choi HC, Jeon S, Biosens. Bioelectron., 26, 2287 (2011)
- Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G, Anal.Chem., 75, 5413 (2003)
- Yantasee W, Charnhattakorn B, Fryxell GE, Lin Y, Timchalk C, Addleman RS, Anal. Chim.Acta., 620, 55 (2008)
- Yantasee W, Lin Y, Fryxell GE, Busche BJ, Anal. Chim. Acta., 502, 207 (2004)
- Choi C, Jeong Y, Kwon Y, Bull. Korean Chem. Soc., 34, 801 (2013)
- Choi C, Seok J, Kwon Y, Appl. Chem. Eng., 23(5), 505 (2012)
- Wei Y, Liu ZG, Yu XY, Wang L, Liu JH, Huang XJ, Electrochem. Commun., 13, 1506 (2011)
- Manivannan A, Kawasaki R, Tryk DA, Fujishima A, Electrochim. Acta, 49(20), 3313 (2004)