화학공학소재연구정보센터
Clean Technology, Vol.19, No.3, 333-341, September, 2013
다양한 등급의 17종 석탄의 CO2 가스화 반응특성 연구
Characterization of CO2 Gasification of 17 Coals With Regard to Coal Rank
E-mail:,
초록
휘발분 21~57 wt%를 포함하는 17종의 다양한 등급의 석탄에 대하여 CO2 가스화 반응을 수행하였다. TGA를 이용하여 CO2 가스화 반응을 실시한 후 열분해 조건(N2)에서의 거동과 비교하였다. N2 분위기에서 온도 증가에 따른 무게 감량은 석탄 내 휘발분 함량에 비례하였고, CO2가스화 반응성도 휘발분 증가에 따라 증가하였으나 열분해 대비 분산된 모습을 보였다. 석탄 내 산소 기능기들은 상대적으로 반응성이 크며, 이에 따라 O/C 비율의 증가는 CO2 가스화 반응성의 증가로 나타났다. 하지만 H/C 비율 및 가스화 반응의 촉매 역할을 담당할 수 있는 회분의 함량은 CO2 반응성과 유의할만한 상관관계를 나타내지 않았다. 이러한 반응 특징은 수증기 가스화 반응과 유사하였으며 고정층 반응기에서 얻어진 CO2 가스화 결과와 일치하였다.
This paper presents results on CO2 gasification of 17 raw coals containing a wide range of volatile matter (21-57 wt%). The gasification is performed using a TGA under CO2 and also under N2 atmosphere. An amount of weight loss with increasing temperature is proportional to that of volatile matter in a coal under N2 atmosphere. Reactivity of CO2 gasification also increases with a content of volatile matter. However, the correlation is a little scattered. Oxygenated functional groups in a coal are generally reactive and therefore, an increase in O/C ratio leads to enhanced reactivity. However, CO2 reactivity is affected by neither H/C ratio nor a content of ashes that possibly activate the gasification reaction. These findings are also applicable to steam coal gasification and the reactivity series are confirmed in the test at a fixed bed reactor.
  1. Longwell JP, Rubin ES, Wilson J, Prog. Energy Combust. Sci., 21(4), 269 (1995)
  2. 2012 World Energy Outlook, IEA (2012)
  3. “전력통계정보시스템,” https://epsis.kpx.or.kr (2013)
  4. 2011 World Energy Outlook, IEA (2011)
  5. Burnham A, Han JW., Clark CE, Wang M, Dunn JB, Palou-Rivera I, Environ.Sci. Technol., 46, 619 (2012)
  6. Springer, “Cleaner Combustion and Sustainable World,” Germany, 11 (2013)
  7. Skorek-Osikowska A, Kotowicz J, Janusz-Szymanska K, Energy Fuels, 26(11), 6509 (2012)
  8. Li J, Liang X, Sep. Purif.Technol., 94, 138 (2012)
  9. Shoko E, McLellan B, Dicks AL, da Costa JCD, Int. J. Coal Geol., 65(3-4), 213 (2006)
  10. Ordorica-Garcia G, Douglas P, Croiset E, Zheng LG, Energy Conv. Manag., 47(15-16), 2250 (2006)
  11. Collot AG, Int. J. Coal Geol., 65(3-4), 191 (2006)
  12. Ball M, Wietschel M, Int. J. Hydrog. Energy., 34, 615 (2009)
  13. Majoumerd M, De S, Assadi M, Breuhaus P, Appl. Energy., 99, 280 (2012)
  14. Higman C, Burg M, “Gasification” 2nd ed., Gulf Professional Publishing, Amsterdam, 1 (2008)
  15. Yoshida S, Matsunami J, Hosokawa Y, Yokota O, Tamaura Y, Kitamura M, Energy Fuels, 13(5), 961 (1999)
  16. Moulijn JA, Kapteun F, Carbon., 33, 1155 (1995)
  17. Ratnasamy C, Wagner JP, “Water Gas Shift Catalysis,” Taylor & Francis Group, UK, 325 (2009)
  18. Li L, Zhao N, Wei W, Sun Y, Fuel., 108, 112 (2013)
  19. Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209 (1998)
  20. Beamish BB, Shaw KJ, Rodgers KA, Newman J, Fuel Process. Technol., 53(3), 243 (1998)
  21. Taylor HS, Neville HA, J. Am. Chem.Soc., 43, 2055 (1921)
  22. Roberts DG, Harris DJ, Fuel, 86(17-18), 2672 (2007)
  23. Takayuki T, Yasukatsu T, Akira T, Fuel., 64, 1438 (1985)
  24. Yoshiyuki N, Fuel., 29, 31 (1991)
  25. Kim JH, Son EK, “Study on air pollution reduction technologies of clean gas fuel(2),” KIER-982217 (1998)
  26. Duan LB, Zhao CS, Zhou W, Qu CR, Chen XP, Energy Fuels, 23(7), 3826 (2009)
  27. Samaras P, Diamadopoulos E, Sakellaropoulos GP, Fuel., 75, 1108 (1996)
  28. Walker PL, Fuel., 60, 801 (1981)
  29. Li CZ, Fuel, 86(12-13), 1664 (2007)
  30. Lothar K, Horst P, Fuel., 62, 205 (1983)
  31. Castro-Marcano F, Mathews JP, Energy Fuels, 25(3), 845 (2011)
  32. Wu SY, Gu J, Zhang X, Wu YQ, Gao JS, Energy Fuels, 22(1), 199 (2008)
  33. Plante P, Roy C, Chornet E, Can. J. Chem. Eng., 66, 307 (1988)
  34. Peralta D, Paterson N, Dugwell D, Kandiyoti R, Energy Fuels, 19(2), 532 (2005)