Clean Technology, Vol.19, No.3, 243-248, September, 2013
그래핀이 표면에 분포된 미립자를 이용한 열전도 복합재료의 개발
Graphene Attached on Microsphere Surface for Thermally Conductive Composite Material
E-mail:
초록
열전도성 복합재료는 방열특성이 요구되는 다양한 분야에 응용되고 있다. 그래핀은 우수한 전기전도성, 기계적 특성, 열전도 특성을 가지는 잠재성이 높은 물질이다. 그러나 기존의 그래핀 입자를 사용한 경우에서는 유기용매를 이용하여 분산을 하게 되어 청정생산공정측면에서 이를 개선하는 연구가 필요하다. 본 연구에서는 마이크로플루이딕(microfluidic)으로 균일한 미립자를 제조하는데 있어 계면안정제를 도입하여 수분산을 통한 그래핀 용액을 연속상(water phase)으로 사용하여 표면에 그래핀이 분포된 폴리메틸메타크릴레이트(Poly(methyl methacrylate), PMMA)미립자를 제조하였다. 본 연구의 제조 방법은 소량의 그래핀으로 열전도 특성이 향상되어 열전도성 복합재료로 사용이 가능하다.
Thermally conductive materials are widely used in various applications where effective heat dissipation is required. Graphene shows high potential for various uses owing to high electrical conductivity, good mechanical strength, and high thermal conductivity. Generally previous works used organic solvents are generally used for the dispersion of graphene in fabrication procedure. In order to achieve clean fabrication it is required to use water media. In this study, we fabricated graphene attached poly(methyl methacrylate) (PMMA) microsphere via microfluidic method. With the aid of surfactant, graphene was well dispersed in water which was used as continuous flow. Thermal conductivity was improved with the small amount of graphene addition and this indicate potential use of this system for thermally conductive composite material.
- Lee HL, Ha SM, Yoo Y, Lee SG, Polym. Sci. Technol., 24(1), 30 (2013)
- Park OK, Lee S, Ku BC, Lee JH, Polym. Sci. Technol., 22(5), 467 (2011)
- Prasher R, Proc. IEEE., 94(8), 1571 (2006)
- Yim SW, Lee JH, Lee YG, Lee SG, Kim SR, J. Adhes. Interface., 10(1), 30 (2009)
- Hong J, Shim SE, Appl. Chem. Eng., 21(2), 115 (2010)
- Luyt AS, Molefi JA, Krump H, Polym. Degrad. Stabil., 91(7), 1629 (2006)
- Sanada K, Tada Y, Shindo Y, Compos. Part A-Appl. S. Manuf., 40(6-7), 724 (2009)
- Lee ES, Lee SM, Shanefield DJ, Cannon WR, J. Am. Ceram. Soc., 91(4), 1169 (2008)
- Zhi CY, Bando Y, Terao T, Tang CC, Kuwahara H, Golberg D, Adv. Funct. Mater., 19(12), 1857 (2009)
- Xu J, Razeeb KM, Roy S, J. Polym. Sci. B: Polym. Phys., 46(17), 1845 (2008)
- Im H, Kim J, Carbon., 50(15), 5429 (2012)
- Potts JR, Dreyer DR, Bielawski CW, Ruoff RS, Polymer, 52(1), 5 (2011)
- Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, Yen MY, Chiou KC, Lee TM, Carbon., 49(15), 5107 (2011)
- Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8(3), 902 (2008)
- Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH, Prog. Polym. Sci., 35(11), 1350 (2010)
- Bai H, Li C, Shi GQ, Adv. Mater., 23(9), 1089 (2011)
- Zaman I, Phan TT, Kuan HC, Meng Q, La LTB, Luong L, Youssf O, Ma J, Polymer., 57(7), 1603 (2011)
- Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S, Carbon., 49(1), 198 (2011)
- Hwangbo KH, Kim MR, Lee CS, Cho KY, Soft Matter., 7(22), 10874 (2011)
- Lewis CL, Choi CH, Lin Y, Lee CS, Yi H, Anal. Chem., 82(13), 5851 (2010)
- Choi CH, Jeong JM, Kang SM, Lee CS, Lee J, Adv. Mater., 24(37), 5078 (2012)
- Jin HJ, Choi HJ, Yoon SH, Myung SJ, Shim SE, Chem. Mater., 17(16), 4034 (2005)
- Kang SM, Choi CH, Kim J, Lee CS, Clean Technol., 18(4), 331 (2012)
- Ryou MH, Lee YM, Cho KY, Han GB, Lee JN, Lee DJ, Choi JW, Park JK, Electrochim. Acta., 60, 23 (2012)