Nature Materials, Vol.6, No.2, 99-108, 2007
Towards a theoretical picture of dense granular flows down inclines
Unlike most fluids, granular materials include coexisting solid, liquid or gaseous regions, which produce a rich variety of complex flows. Dense flows down inclines preserve this complexity but remain simple enough for detailed analysis. In this review we survey recent advances in this rapidly evolving area of granular flow, with the aim of providing an organized, synthetic review of phenomena and a characterization of the state of understanding. The perspective that we adopt is influenced by the hope of obtaining a theory for dense, inclined flows that is based on assumptions that can be tested in physical experiments and numerical simulations, and that uses input parameters that can be independently measured. We focus on dense granular flows over three kinds of inclined surfaces: flat-frictional, bumpy-frictional and erodible. The wealth of information generated by experiments and numerical simulations for these flows has led to meaningful tests of relatively simple existing theories.