화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.33, No.4, 663-680, 2013
Plasma Assisted Synthesis and Physicochemical Characterizations of Ni-Co/Al2O3 Nanocatalyst Used in Dry Reforming of Methane
To assess the effects of plasma treatment a Ni-Co/Al2O3 nanocatalyst (10 % Ni and 3 % Co) was prepared via impregnation method followed by treatment with a non-thermal plasma to be investigated in a catalytic dry reforming of methane. The impregnated and plasma-treated nanocatalysts were characterized using XRD, FESEM, EDX, TEM, BET, FTIR, and XPS techniques. The XRD patterns confirmed the presence of nickel as NiO and NiAl2O4 and cobalt as Co3O4 on alumina support. Small NiO, NiAl2O4, and Co3O4 crystals observed in plasma-treated nanocatalyst, exhibited a good dispersion of active phase in this catalyst. The average particles size in plasma-treated sample obtain by FESEM micrograph were shown to be smaller than that of impregnated sample and the morphology was more homogenous and relatively agglomeration-free in plasma-treated Ni-Co/Al2O3 nanocatalyst. According to BET analysis, specific surface area of plasma-treated sample was 58 % higher than the non-treated catalyst. TEM analysis showed that particles of active phase were fairly small and well-dispersed on Al2O3 as a result of the plasma treatment. Better dispersion of active metal on the surface of plasma-treated sample was confirmed by XPS analysis. The plasma-treated sample showed higher yield and conversion at all temperature ranges investigated and was more resistant to coke formation compared to the non-treated sample. The results from the characterization and reaction studies suggests that plasma treatment may be a promising method for obtaining more active and stable nanocatalysts for dry reforming of methane.