화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.4, 580-587, August, 1994
Na+/MgO 촉매상에서 메탄의 Oxidative Coupling 반응의 속도론적 해석
Kinetic Analysis of Oxidative Coupling of Methane over Na+/MgO Catalyst
초록
고정층 상압 유통식 반응기에서 메탄의 전화율 10% 미만의 범위에서 Na+(50wt%)/MgO 촉매를 사용하여 반응온도 710, 730, 750, 770, 790℃에서 메탄과 산소의 분압을 변화시켜 가면서 메탄의 oxidative coupling반응을 수행하여 이산화탄소와 에탄의 생성속도를 구하고 curve fitting으로 속도식을 증명하였다. Langmuir-Hinshelwood, Rideal-Redox, Eley-Rideal형 반응 메카니즘 중에서 Langmuir-Hinshelwood형 반응 메카니즘이 실험 결과와 가장 잘 일치하였으며, CH3·의 생성에 관여하는 산소종은 촉매 표면의 O2- 또는 O22-으로 제시할 수 있었고, 이때의 활성화 에너지는 약 39.3kca1/mol이었다. 또한, curve fitting결과 COx을 생성하는 산소의 화학 양론계수 x는 약 1.5이었으며, 이로부터 CH3·의 일부가 표면산소에 의해서 산화반응을 거쳐 CH3O2·* 형성을 추측할 수 있었다.
The oxidative coupling of methane was studied kinetically using Na+(50wt% )/MgO catalyst at 710, 730, 750, 770 and 790℃ in a fixed bed flow reactor at the atmospheric pressure under differential conversion conditions. Through curve fitting, it was found that the Langmuir-Hinshelwood type mechanism was fitted to this reaction rather than Rideal-Redox type or Eley-Rideal type mechanism. Therefore, it was proposed that the O2- or O22- species on the surface was related to the production of CH3·. The estimated activation energy of CH3· production was about 39.3kcal/mol. Moreover, as the result of curve fitting, the stoichiometric coefficient of O2 for the production of CH3· to produce COx was approximately 1.5. Accordingly, it could be concluded that the CH3O2·* was prouduced through the partial oxidation of CH3· with the surface oxygen.
  1. Pitchai R, Klier K, Catal. Rev.-Sci. Eng., 28, 13 (1986)
  2. Otsuka K, Sekiyu Gakkaishi, 30, 385 (1987)
  3. Han S, Martenak DJ, Palermo RE, Pearson JA, Walsh DE, J. Catal., 136, 578 (1992) 
  4. Lee JS, Oyama ST, Catal. Rev.-Sci. Eng., 30, 249 (1988)
  5. Amenomiya Y, Birss V, Goledzinowski M, Galuszka J, Sanger A, Catal. Rev.-Sci. Eng., 32, 163 (1990)
  6. Ito T, Wang JX, Lin CH, Lunsford JH, J. Am. Chem. Soc., 107, 5062 (1985) 
  7. Joseph M, Catal. Rev.-Sci. Eng., 35, 169 (1993)
  8. Keller GE, Bhasin MM, J. Catal., 73, 1 (1982) 
  9. Roos JA, Kore SJ, Veehof RHJ, VanOmmen JG, Roos JRH, Appl. Catal., 52, 131 (1989) 
  10. Iwamatsu E, Aika KI, J. Catal., 117, 416 (1989) 
  11. Reyes SC, Iglesia E, Kelkar CP, Chem. Eng. Sci., 48, 2643 (1993) 
  12. Lehmann L, Baerns M, J. Catal., 135, 467 (1992) 
  13. Efstathiou AM, Boudouvas D, Vamvouka N, Verykios XE, J. Catal., 140, 1 (1993) 
  14. Feng Y, Niiranen J, Gutman D, J. Phys. Chem., 95, 6558 (1991) 
  15. Otsuka K, Jinno K, Inorg. Chim. Acta, 121, 237 (1986) 
  16. Korf SJ, Roos JA, Derksen JWHC, Vreeman JA, Vanommen JG, Ross JRH, Appl. Catal., 59, 291 (1990) 
  17. Tung WY, Lobban LL, Ind. Eng. Chem. Res., 31, 1621 (1992) 
  18. Seo HJ, Yu EY, J. Res. Ins. Catal., 14, 177 (1992)
  19. Ebert K, Ederer H, Isenhour TL, "Computer Applications in Chemistry," 359, VCH, Verlagsgesellschaft, Weinheim (1989)