Langmuir, Vol.29, No.33, 10448-10454, 2013
Formation of Heterogeneous Polymer Films via Simultaneous or Sequential Depositions of Soluble and Insoluble Monomers onto Ionic Liquids
In this paper, we studied the formation of heterogeneous polymer films on ionic liquid (IL) substrates via the simultaneous or sequential depositions of monomers that are either soluble or insoluble in the liquid. We found that the insoluble monomer 1H,1H,2H,2H-perfluorodec-y1 acrylate (PFDA) only polymerizes at the IL surface, while the soluble monomer ethylene glycol diacrylate (EGDA) can polymerize at both the IL surface and within the bulk liquid. The polymer chains that form within the bulk liquid entrap IL as they integrate into the polymer film formed at the IL surface, resulting in heterogeneous films that contain IL on the bottom side. Varying the order in which the soluble and insoluble monomers were introduced into the system led to different film structures. When the insoluble monomer was introduced first, a film formed at the surface and the soluble monomer then diffused through this film and polymerized within the bulk, leading to a sandwich structure. When the soluble monomer was introduced first, a layered film was formed whose structure followed the order in which the monomers were introduced. When the two monomers were introduced simultaneously, the soluble monomer polymerized in the bulk while a copolymer film formed at the surface. This study provides an understanding of how to control the composition of layered polymer films deposited onto IL substrates in order to develop new composite materials for separation and electrochemical applications.