화학공학소재연구정보센터
Langmuir, Vol.29, No.32, 9951-9957, 2013
An Electrochemically Controlled Microcantilever Biosensor
An oligonucleotide-based electrochemically controlled gold-coated microcantilever biosensor that can transduce specific biomolecular interactions is reported. The derivatized microcantilever exhibits characteristic surface stress time course patterns in response to an externally applied periodic square wave potential. Experiments demonstrate that control of the surface charge density with an electrode potential is essential to producing a sensor that exhibits large, reproducible surface stress changes. The time course of surface stress changes are proposed to be linked to an electrochemically mediated competition between the adsorption of solution-based ions and the single- or double-stranded oligonucleotides tethered to the gold surface. A similar potential-actuated change in surface stress also results from the interaction between an oligonucleotide aptamer and its cognate ligand, demonstrating the broad applicability of this methodology.