Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.3, 517-523, June, 1994
DGEBA-MDA-SN-Hydroxyl계 복합재료의 제조-DGEBA-MDA-SN-HQ계의 경화반응 속도론 및 메카니즘-
DGEBA-MDA-SN-Hydroxyl Group System and Composites -Cure Kinetics and Mechanism in DGEBA/MDA/SN/HQ System-
초록
DGEBA(diglycidyl ether of bisphenol A)/MDA(4,4'-methylene dianiline)/SN(succinonitrile)/HQ(hydroquinone)계의 경화반응 속도론 및 메카니즘을 연구하였다. SN과 HQ는 반응성 첨가제와 촉매로 도입하였다. 경화반응 속도론은 DSC 분석에 의해 Kissinger equation과 fractional-life법을 이용하여 연구하였다. DGEBA/MDA/SN 계의 활성화에너지와 반응차수는 SN의 함량에 관계없이 거의 일정하였고, 촉매로써 HQ가 첨가됨으로 인해 활성화 에너지와 반응시작온도가 낮아졌다. 이들 계의 반응 메카니즘을 고찰하기 위하여 SN의 함량에 따라 FT-IR을 측정하였다. 그리고, SN:HQ의 혼합비는 4:1이었다. Diamine으로 경화되는 에폭시 수지의 경화반응 메카니즘은 primary amine-epoxy 반응, secondary amine-epoxy 반응, epoxy-hydroxyl 반응이 일어나는 것으로 알려져 있다. DGEBA/MDA/SN/HQ 계에서는 HQ의 hydroxyl 기가 epoxy 및 amine과 결합하여 전이상태를 형성하여 epoxide ring을 빠르게 개환시켜줌으로써 amine-epoxy반응이 쉽게 일어남을 알았다.
The effects of cure kinetics and mechanism of DGEBA(diglycidyl ether of bisphenol A)/MDA(4,4'-methylene dianiline) with SN(succinonitrile) and HQ(hydroquinone) as an additive and accelerator were investigated. Cure kinetics was evaluated by Kissinger equation and fractional-life method through DSC analysis. The activation energy has hydroxyl group as an accelerator, the activation energy and the starting cure-temperature were lower than those of DGEBA/MDA/SN system. Cure mechanism of those systems was investigated through FT-IR according to the various SN contents. The ratio was SN:HQ=4:1. It has been known that the cure reactions of an epoxy-diamine system are composed of primary amine-epoxy reaction, secondary amino-epoxy reaction and epoxy-hydroxyl group reaction. But in DGEBA/MDA/SN system, primary amino-CN group reaction and CN group-hydroxyl group reaction were added to the above mentioned reactions. These reactions attributed to the long main chain and the low crossliking density. And in DGEBA/MDA/SN/HQ system, hydroxyl group of HQ formed a transition state with epoxide group and amime group and also opened the ring of the epoxide group rapidly, then amino-epoxy reaction took place easily.
- Hunston DL, Tech. Rev., 6, 176 (1984)
- Lee SN, Yuo WB, Polym. Eng. Sci., 27, 1317 (1987)
- Peyser P, Bascom WD, J. Appl. Polym. Sci., 21, 2359 (1977)
- Sabra A, Pascault JP, Seytre G, J. Appl. Polym. Sci., 32, 5147 (1986)
- Prime RB, Thermal Characterization of Polymeric Materials, E.A. Turi., Ed., Academic Press, Chap. 5, New York (1982)
- Duffy JV, Hui E, Hattmann B, J. Appl. Polym. Sci., 33, 2959 (1987)
- Keenan MR, J. Appl. Polym. Sci., 33, 1725 (1987)
- Riccardi CC, Adabbo HE, Williams RRJ, J. Appl. Polym. Sci., 29, 2481 (1984)
- Borchardt HJ, Daniels F, J. Am. Chem. Soc., 79, 41 (1957)
- Horie K, Mita I, Kambe H, J. Polym. Sci. A: Polym. Chem., 8, 2839 (1970)
- Cho SW, Shim MJ, Kim SW, Computer Aided Innovation of New Materials II, 1439, North-Holland (1993)
- Diana GD, Zalay ES, Cutler RA, J. Org. Chem., 30, 298 (1965)
- Bokare UM, Gandhi KS, J. Polym. Sci., 18, 857 (1980)
- Chern CS, Poehlein GW, Polym. Eng. Sci., 27, 788 (1987)
- Chapmann NB, Parker RE, J. Chem. Sci., 2, 1925 (1959)
- Saunder TF, Levy MF, Serino JF, J. Polym. Sci. A: Polym. Chem., 5, 1609 (1967)