화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.3, 517-523, June, 1994
DGEBA-MDA-SN-Hydroxyl계 복합재료의 제조-DGEBA-MDA-SN-HQ계의 경화반응 속도론 및 메카니즘-
DGEBA-MDA-SN-Hydroxyl Group System and Composites -Cure Kinetics and Mechanism in DGEBA/MDA/SN/HQ System-
초록
DGEBA(diglycidyl ether of bisphenol A)/MDA(4,4'-methylene dianiline)/SN(succinonitrile)/HQ(hydroquinone)계의 경화반응 속도론 및 메카니즘을 연구하였다. SN과 HQ는 반응성 첨가제와 촉매로 도입하였다. 경화반응 속도론은 DSC 분석에 의해 Kissinger equation과 fractional-life법을 이용하여 연구하였다. DGEBA/MDA/SN 계의 활성화에너지와 반응차수는 SN의 함량에 관계없이 거의 일정하였고, 촉매로써 HQ가 첨가됨으로 인해 활성화 에너지와 반응시작온도가 낮아졌다. 이들 계의 반응 메카니즘을 고찰하기 위하여 SN의 함량에 따라 FT-IR을 측정하였다. 그리고, SN:HQ의 혼합비는 4:1이었다. Diamine으로 경화되는 에폭시 수지의 경화반응 메카니즘은 primary amine-epoxy 반응, secondary amine-epoxy 반응, epoxy-hydroxyl 반응이 일어나는 것으로 알려져 있다. DGEBA/MDA/SN/HQ 계에서는 HQ의 hydroxyl 기가 epoxy 및 amine과 결합하여 전이상태를 형성하여 epoxide ring을 빠르게 개환시켜줌으로써 amine-epoxy반응이 쉽게 일어남을 알았다.
The effects of cure kinetics and mechanism of DGEBA(diglycidyl ether of bisphenol A)/MDA(4,4'-methylene dianiline) with SN(succinonitrile) and HQ(hydroquinone) as an additive and accelerator were investigated. Cure kinetics was evaluated by Kissinger equation and fractional-life method through DSC analysis. The activation energy has hydroxyl group as an accelerator, the activation energy and the starting cure-temperature were lower than those of DGEBA/MDA/SN system. Cure mechanism of those systems was investigated through FT-IR according to the various SN contents. The ratio was SN:HQ=4:1. It has been known that the cure reactions of an epoxy-diamine system are composed of primary amine-epoxy reaction, secondary amino-epoxy reaction and epoxy-hydroxyl group reaction. But in DGEBA/MDA/SN system, primary amino-CN group reaction and CN group-hydroxyl group reaction were added to the above mentioned reactions. These reactions attributed to the long main chain and the low crossliking density. And in DGEBA/MDA/SN/HQ system, hydroxyl group of HQ formed a transition state with epoxide group and amime group and also opened the ring of the epoxide group rapidly, then amino-epoxy reaction took place easily.
  1. Hunston DL, Tech. Rev., 6, 176 (1984)
  2. Lee SN, Yuo WB, Polym. Eng. Sci., 27, 1317 (1987) 
  3. Peyser P, Bascom WD, J. Appl. Polym. Sci., 21, 2359 (1977) 
  4. Sabra A, Pascault JP, Seytre G, J. Appl. Polym. Sci., 32, 5147 (1986) 
  5. Prime RB, Thermal Characterization of Polymeric Materials, E.A. Turi., Ed., Academic Press, Chap. 5, New York (1982)
  6. Duffy JV, Hui E, Hattmann B, J. Appl. Polym. Sci., 33, 2959 (1987) 
  7. Keenan MR, J. Appl. Polym. Sci., 33, 1725 (1987) 
  8. Riccardi CC, Adabbo HE, Williams RRJ, J. Appl. Polym. Sci., 29, 2481 (1984) 
  9. Borchardt HJ, Daniels F, J. Am. Chem. Soc., 79, 41 (1957) 
  10. Horie K, Mita I, Kambe H, J. Polym. Sci. A: Polym. Chem., 8, 2839 (1970) 
  11. Cho SW, Shim MJ, Kim SW, Computer Aided Innovation of New Materials II, 1439, North-Holland (1993)
  12. Diana GD, Zalay ES, Cutler RA, J. Org. Chem., 30, 298 (1965)
  13. Bokare UM, Gandhi KS, J. Polym. Sci., 18, 857 (1980)
  14. Chern CS, Poehlein GW, Polym. Eng. Sci., 27, 788 (1987) 
  15. Chapmann NB, Parker RE, J. Chem. Sci., 2, 1925 (1959)
  16. Saunder TF, Levy MF, Serino JF, J. Polym. Sci. A: Polym. Chem., 5, 1609 (1967)