Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.3, 443-450, June, 1994
폴리 아크릴산 고분자전해질의 수용액 속에서의 겔화에 관한 연구
The Gelation Studies of PAA Polyelectrolytes in Aqueous Media
초록
Polyacrylic acid를 NaOH와 NH4OH로 중화시켜 중화도가 다른 polyelectrolyte를 만든 후, 수용액 상에서 ethylene glycol diglycidyl ether(EGDE)로 가교시켜 안정한 상태의 젤을 얻었다. 안정한 젤이 얻어지는 가장 작은 polyelectrolyte의 농도인 Cgel은 polyelectrolyte의 extended from에도 불구하고 비슷한 분자량의 중성 고분자의 간과 비슷하였다. 전해질 고분자에 대한 scaling이론에 의하면 semi-dilute영역에서의 전해질 고분자용액은 분자량 의존성이 없어야 함에도 불구하고 gelation결과는 중성 고분자와 흡사한 분자량 의존성을 보이며 entanglement 농도인 C**와 비교했을 때에도 Cgel은 훨씬 큰 값을 갖는다. 이는 고분자 전해질의 농도가 진해질수록 용액의 이온세기가 증가하여 extended from에서 coil form으로 변화되기 때문으로 보인다. 고분자 전해질의 중화도에 따른 gelation은 100% 중화된 시료의 Cgel값과 분자량 의존성에 있어 거의 비슷한 경향을 보이며 이는 고분자 전해질의 conformation변화가 이온세기에 상당히 민감함을 보여 준다. 고분자 전해질 수용액에 추가로 저분자량의 염을 가하면 고분자의 용액 속에서의 크기가 더욱 축소하여 더 큰 Cgel값을 보인다.
Polyelectrolytes of various ionization degrees, which are prepared by neutralization of poly(acrylic acid)(PAA), were crosslinked by ethylane glycol diglycidyl ether(EGDE) in aqueous solution. Cgel, the minimum polymer concentration at which gelation occurs, was higher than expected. Cgel was comparable with that of neutral polymer. This is considered to be due to the size contraction of polyelectrolyte, which comes from ionic strength increase as polymer concentration is increased. Cgel is low when molecular weight of the sample becomes high. It reveals that polyelectrolyte is crosslinked in coil form not in extended rod form. This behavior is similar to the crosslinking of neutral polymers. Polyelectrolytes of partially ionized sample generally follow the behavior of fully ionized polyelectrolyte. Polyelectrolyte with added salt was also studied. Considering the pH dependence of EDGE reactivity it was difficult to compare the system which differs in pH significantly.
- deGennes PG, Scaling Concepts in Polymer Physics; Cornell University Press; Ithaca, NY (1979)
- Berry GC, Nakayasu H, Fox TG, J. Polym. Sci. B: Polym. Phys., 17, 1825 (1979)
- Berry GC, Encyclopedia of Polymer Science and Engineering; H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges, Eds., John Wiley & Sons, Inc., New York, 8, 760-767 (1986)
- Kim CK, Sohn JI, Bull. Korean Chem. Soc., 14, 34 (1993)
- deGennes PG, Pincus P, Velasco R, Broachard F, J. Phys., 37, 1461 (1976)
- Odijk T, Macromolecules, 12, 688 (1979)
- Drifford M, Dalbiez JP, J. Phys. Chem., 88, 5368 (1984)
- Schumitz KS, Ramsay DJ, Macromolecules, 18, 933 (1985)
- Sedlak M, Amis EJ, J. Chem. Phys., 96(1), 817 (1992)
- Sedlak M, Amis EJ, J. Chem. Phys., 96(1), 826 (1992)
- Ise N, Okubo T, Kunugi S, Matsuoka H, Yamamoto K, Ishii Y, J. Chem. Phys., 81(7), 3294 (1984)
- Sandler SR, Karo W, Polymer Syntheses; Academic Press; New York, 2, 264-305 (1974)
- Takahashi A, Yamori S, Kagawa I, Nippon Kagaku Zasshi, 83, 11 (1962)
- Takahashi A, Nagasawa M, J. Am. Chem. Soc., 86, 543 (1964)
- McAdams LV, Gannon JA, Encyclopedia of Polymer Science and Engineering: H.F. Mark, N.M. Bikales, C.G. Overberger, and G. Menges, Ed.: John Wiley & Sons, Inc., New York, 6, 322 (1986)
- Choi SB, Polym. Technol., Lucky LTD, 13, 70 (1990)
- Park S, Lee J, Yu H, "Self Diffusion of Synthetic Polyelectrolyte without Added Salt," to be Submitted to Macromolecules
- LeBret M, J. Chem. Phys., 76, 6243 (1982)
- Fixmann M, J. Chem. Phys., 76, 6346 (1982)
- Nierleich M, Boue F, Lapp A, Oberthur R, Colloid Polym. Sci., 263(12), 955 (1985)
- Koene RS, Mandel M, Macromolecules, 16, 220 (1983)
- Park S, Yu H, "Added Salt Effect on Translational Diffusion of a Synthetic Polyelectrolyte," to be submitted to Macromolecules
- Koene RS, Nicolai T, Mandel M, Macromolecules, 16, 227 (1983)