Journal of Physical Chemistry A, Vol.117, No.29, 6362-6372, 2013
Exciton Annihilation and Dissociation Dynamics in Group II-V Cd3P2 Quantum Dots
Semiconductor quantum dots (QDs) have emerged as a new class of light harvesting materials for solar energy conversion due to their unique size-dependent properties. Most recent studies have focused on II-VI group (such as CdX, X = S, Se, and Te) QDs and lead salt (such as PbS, PbSe, and PbTe) QDs. In this paper, we investigate exciton dissociation and annihilation dynamics of Cd3P2 QDs, a low bulk band gap (035 eV) II-V group material, to explore their potential application as a light harvesting component for photoreduction systems. For Cd3P2 QDs with 1S exciton band at 650 nm, a long-lived single exciton state with lifetime of 259 ns and a high emission quantum yield of 65% were observed. In Cd3P2 QD-rhodamine B (RhB, an electron acceptor) complexes, excitons in QDs could be dissociated by ultrafast electron transfer to RhB (6.2 ps), and the charge separated state had a long lifetime (31 ns). Although the photoinduced electron transfer rate in QD-RhB complexes decreased with increasing QD size, electron transfer was observed in QDs with 1S exciton bands at wavelength as long as 1050 nm. Compared with CdSe and PbS, Cd3P2 QDs with both more strongly reducing excited states and broader absorption in the visible and near IR region can be readily achieved, making them potential photosensitizers for photodriven water or CO2 reduction reactions.