Journal of Physical Chemistry A, Vol.117, No.26, 5419-5427, 2013
Efficiency of Noncoherent Photon Upconversion by Triplet-Triplet Annihilation: The C60 Plus Anthanthrene System and the Importance of Tuning the Triplet Energies
As part of a continuing effort to find noncoherent photon upconversion (NCPU) systems with improved energy conversion efficiencies, the photophysics of the blue emitter, anthanthrene (An), and the fullerene absorber-sensitizer, C-60, have been examined by both steady-state and pulsed laser techniques. An is a promising candidate for NCPU by homomolecular triplet-triplet annihilation (TTA) because its triplet state lies similar to 800 cm(-1) below the triplet energy of the C-60 donor (thereby improving efficiency by reducing back triplet energy transfer), and its fluorescent singlet state lies in near resonance with double its triplet energy (thus minimizing thermal energy losses in the annihilation process). In fluid solution, efficient triplet-triplet donor-acceptor energy transfer is observed, and rate constants for homomolecular TTA in the An acceptor are estimated to approach the diffusion limit. NCPU is also observed in An + C-60 in poly(methylmethacrylate) thin films.