Journal of Adhesion Science and Technology, Vol.27, No.14, 1548-1562, 2013
Epoxysilane as adhesion promoter in duplex system
Coatings are one of the most used protection methods for metals. Metallic coatings, such as zinc and its alloys, are used to protect steel in mild corrosive environments. In aggressive environments, on the other hand, organic coatings must be employed in the so-called duplex systems. However, the galvanized steel/organic coating adhesion is a problem and many attempts had been done to solve it with the incorporation of a chromate-based or phosphate-based interlayer. Nowadays, the use of these compounds is questioned due to their environmental impact and new adhesion promoters, like silanes, are being investigated. The aim of this paper was to study the adhesion and the anticorrosive behavior of a duplex system with a layer of glycidoxypropyltrimethoxysilane (-GPS) between the zinc and the coating. Polarization tests and corrosion potential measurements were done on the -GPS/galvanized steel to select the better anticorrosive pretreatment conditions for the application of an organic traditional paint. Dried and wet adhesion of the coating to the pretreated substrate was studied by the standard tape test. Salt spray test and electrochemical noise technique were employed to study the corrosion behavior of the duplex systems. Results showed that the films of -GPS formed on galvanized steel diminished the corrosion current of the metal, but they do not protect the substrate by a barrier effect. The incorporation of the pretreatment in the duplex system increased the adhesion of the paint, especially when the pretreated substrate was cured 1h at 200 degrees C.