International Journal of Control, Vol.86, No.3, 396-409, 2013
Power-constrained intermittent control
In this article, input power, as opposed to the usual input amplitude, constraints are introduced in the context of intermittent control. They are shown to result in a combination of quadratic optimisation and quadratic constraints. The main motivation for considering input power constraints is its similarity with semi-active control. Such methods are commonly used to provide damping in mechanical systems and structures. It is shown that semi-active control can be re-expressed and generalised as control with power constraints and can thus be implemented as power-constrained intermittent control. The method is illustrated using simulations of resonant mechanical systems and the constrained nature of the power flow is represented using power-phase-plane plots. We believe the approach we present will be useful for the control design of both semi-active and low-power vibration suppression systems.
Keywords:intermittent control;hybrid control;vibration control;semi-active damping;power phase-plane