Journal of the Korean Industrial and Engineering Chemistry, Vol.5, No.1, 127-138, February, 1994
에탄올 수용액의 Pervaporation에서의 투과거동
A Permeation Behavior for the Pervaporation of Aqueous Ethanol Solution
초록
CTA(cellulose triacetate) 막을 이용한 물과 에탄올의 투과증발(pervaporation) 막분리에서 수착과 투과실험으로부터 용해-확산 투과기구modeling 및 그 함수형과 parameters에 대한 해석을 시도하였다. 순성분들의 수착 data를 사용하여 Flory-Huggins 식으로 계산한 3 성분계(에탄올/물/CTA) 수착평형 조성을 추산하여 실측치와 비교하였다. 막 내부의 조성과 액상의 평형 조성간에 열역학적 평형 관계식을 적용하기 위해 막 내 겉보기 활동도를 Wilson식과 Van Laar식으로 상관시켰다. 투과속도식은 한 성분의 투과속도가 그 성분의 막 내 농도구배에 비례하며, 또한 확산계수의 농도 의존성이 에탄올 농도만의 지수함수라고 가정하여 물과 에탄을 투과속도를 계산하였으며 이는 실측치와 잘 일치하였다. 한 성분의 투과속도와 수착량이 다른 성분에 비해 현저히 작은 경우에는 대류항을 무시할 수 없음을 알았고, 온도가 높고, 투과측 압력이 낮을수록 투과속도와 투과선택도가 증가하였다.
In the process of pervaporation separation for aqueous ethanol solution through cellulose tai-acetate(CTA) membrane, the modelling on the solution-diffusion permeation mechanism was built up on the basis of sorption and permeation experimental results. Also its function type and parameter were examined. The composition of sorption equilibrium in three component system(Ethanol/Water/CTA ) were compared with the calculated value by Flory-Huggins' equation using the pure component sorption data. In order to apply the thermodynamic equilibrium relationship between the membrane free composition in the membrane and the equilibrium composition in the liquid phase, the apparent activity this system, however, the results were not satisfied. Diffusion equations were expressed with the concentration gradient considering permeate alone, and a concentration-dependent diffusion coefficient which includes a parameter was used. And this model was fitted with the measured permeation rates. If the permeation rate and the amount of sorption of one component were much larger than those of the other, the bulk flow term could not be negligible. The flux and selectivity were increased with increasing temperature, and with decreasing downstream pressure.
- Binning RC, Lee RJ, Jenning JF, Martine EC, Ing. Eng. Chem., 53, 45 (1961)
- Mulder MHV, Smolders CA, J. Membr. Sci., 17, 289 (1984)
- Mulder MHV, Franken T, Smolders CA, J. Membr. Sci., 22, 155 (1985)
- Mulder MHV, Franken ACM, Smolders CA, J. Membr. Sci., 23, 41 (1985)
- Flory PJ, "Principle of Polymer Chemistry," Cornell University Press (1953)
- Rautenbach R, Albrecht R, J. Membr. Sci., 19, 1 (1985)
- Rautenbach R, Albrecht R, J. Membr. Sci., 25, 1 (1985)
- Rautenbach R, Albrecht R, J. Membr. Sci., 25, 25 (1985)
- Greenlaw FW, Shelden RA, Thompson EV, J. Membr. Sci., 2, 333 (1977)
- Brun JP, Larchet C, Melet R, Balvestre G, J. Membr. Sci., 23, 257 (1985)
- Long RB, Ind. Eng. Chem. Fundam., 4, 445 (1965)
- Yoshikawa M, Ohsawa T, Tanigaki M, Eguchi W, J. Appl. Polym. Sci., 37, 299 (1989)
- Gmehling J, Onken U, "Vapor-Liquid Equilibrium Data Collection," Published by Dechema (1977)
- Paul DR, Ebra-Lima OM, J. Appl. Polym. Sci., 14, 2201 (1970)
- Nguyen TQ, J. Membr. Sci., 34, 165 (1987)
- Sferrazza RA, Escobosa R, Gooding CH, J. Membr. Sci., 35, 125 (1988)
- Asai H, Kato S, Nagahama K, 日本 化學工學論文集, 15, 1172 (1989)
- Asai H, Kato S, Nagahama K, 日本 化學工學論文集, 16, 69 (1990)
- 전종기, 명완재, 임선기, 멤브레인, 1, 34 (1991)
- Asai H, Kato S, Nagahama K, 日本 化學工學論文集, 15, 811 (1989)