화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.4, No.4, 807-813, December, 1993
금속 산화물 촉매를 이용한 메탄의 Oxidative Coupling 반응
Oxidative Coupling of Methane by Metal Oxide Catalysts
초록
메탄의 직접 전환 기술 중 하나인 OCM(oxidative coupling of methane) 반응을 수행하였다. 사용한 금속 산화물 촉매는 Li/MgO와 Pb/MgO이었다. 온도에 따른 촉매의 반응성을 알아보기 위해 600, 700, 800℃에서 반응을 행하였으며, 반응물 혼합비(메탄:산소)에 따른 반응성, 전환율 및 선택도를 알아보기 위해 700℃에서 혼합비를 2:1 및 1:1로 하여 실험을 하였다. 그 결과 7wt% Li/MgO 촉매의 경우 반응온도 700℃이고 혼합비가 2:1일 때 메탄의 전환율과 C2화합물의 선택도가 각각 20%, 65% 정도로서 우수한 반응성을 보임을 알 수 있었다. 7wt% Ll/MgO 촉매의 경우 700℃에서 혼합비가 1:1일 때 메탕의 전환율은 30%로 증가했으나 C2화합물의 선택도는 45%로 감소하였다. Pb/MgO 촉매는 Li/MgO 보다 낮은 선택도를(25%) 나타내었다.
Oxidative coupling of methane(OCM), one of the methods of direct methane conversion, was performed. Metal oxide catalysts used were Li/MgO and Pb/MgO. To investigate the reactivity of the catalysts with temperature, the reaction was carried out at 600, 700 and 800 ℃; and to investigate the effect of the feed ratio of the reactants(CH4:O2) on reactivity, conversion, and selectivity the reaction was performed at 700 ℃ with the feed ratio of 2:1 and 1:1. The results indicate that 7wt% Li/MgO catalyst is a good catalyst for OCM reaction with 20% conversion and 65% selectivity at 700 ℃ with the feed ratio of 2:1. As feed ratio was 1:1, methane conversion was increased to 30% while C2 selectivity decreased to 45% at 700 ℃ with 7wt% Li/MgO catalyst. The Pb/MgO catalyst showed less selectivity(25%) than Li/MgO did.
  1. MacDougall LV, Catal. Today, 8, 337 (1991) 
  2. Baerns M, Ross JRH, "Perspectives in Catalysis," The IUPAC Monograph (1991)
  3. 박상언, 장종산, 촉매, 7, 32 (1991)
  4. Edwards JH, Do KT, Tyler RJ, "Methane Conversion by Oxidative Processes," pp. 429 ~ 462, New York (1992)
  5. Foster NR, Appl. Catal., 19, 1 (1985) 
  6. Pitchai R, Klier K, Catal. Rev.-Sci. Eng., 28, 13 (1986)
  7. Wolf EE, "Methane Conversion by Oxidative Processes," pp. 527 ~ 540, New York (1992)
  8. Kuo JCW, "Engineering Evaluation of Direct Methane Conversion Processes, Methane Conversion by Oxidative Processes," pp. 483 ~ 526, New York (1992)
  9. Keller GE, Bhasin MM, J. Catal., 73, 9 (1982) 
  10. Hinsen W, Baerns M, Chem. Ztg., 107, 223 (1983)
  11. Ito T, Lunsford JH, Nature, 314, 721 (1985)
  12. Driscoll DJ, Lunsford JH, J. Phys. Chem., 87, 301 (1983) 
  13. Driscoll DJ, Lunsford JH, J. Phys. Chem., 89, 4415 (1985) 
  14. Ito T, Wang JX, Lin CH, Lunsford JH, J. Am. Chem. Soc., 107, 5062 (1985) 
  15. Kharas KCC, Lunsford JH, J. Am. Chem. Soc., 111, 2336 (1989)