화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.5, 606-612, September, 2013
Glycidol을 개시제로 이용한 L-lactide 개환중합
Ring-Opening Polymerization of L-lactide with Glycidol as Initiator
E-mail:
초록
Al(O-i-Pr)3을 촉매로 이용하고 중합 개시제로 glycidol을 사용하여 L-lactide를 개환중합하여 glycidol-poly (lactide)(Gly-PLA)를 얻었다. 1H NMR 분석 결과 glycidol의 말단에 존재하는 수산기가 Gly-PLA에는 존재하지 않았고 이를 통해 glycidol의 말단에 존재하는 OH기가 개시제의 역할을 하여 중합이 진행되었음을 확인하였다. Llactide 용액중합과 벌크중합을 진행하였으며, L-lactide/glycidol 몰비, 중합 온도와 시간에 따라 생성된 Gly-PLA의 분자특성을 관찰하였다. L-lactide/glycidol 몰비가 증가할수록 수율과 분자량은 증가하였다. 또한 L-lactide/glycidol 몰비가 증가할수록 저분자량에 해당하는 낮은 녹는점 피크는 줄어들고, 고분자량에 해당하는 높은 녹는점 피크가 증가하였다.
Glycidol-poly(lactide) (Gly-PLA) were synthesized via L-lactide ring opening polymerization with glycidol as an initiator and Al(O-i-Pr)3 catalyst. The structure of Gly-PLA was analyzed and successfully confirmed by 1H NMR. The OH group of glycidol in Gly-PLA was absent according to the 1H NMR analysis, indicating that the terminal OH group of glycidol successfully served as an initiator in the L-lactide polymerization. The solution and bulk polymerizations of L-lactide with glycidol were performed to examine the effect of L-lactide/glycidol molar ratio, polymerization temperature and time on the molecular characteristics of Gly-PLA. The conversion and molecular weight increased with an increase in L-lactide/glycidol molar ratio. Gly-PLA showed the bimodal type DSC curve. The low Tm peak of low molecular weight reduced but the high Tm peak of high molecular weight increased as L-lactide/glycidol molar ratio increased.
  1. Tu Q, Wang JC, Liu R, Wang J, Colloids Surf. B:Biointerfaces., 102, 331 (2013)
  2. Spasova M, Mespouille L, Coulembier O, Paneva D, Manolova N, Rashkov I, Dubois P, Biomacromolecules, 10(5), 1217 (2009)
  3. Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A, Biomacromolecules, 7(12), 3316 (2006)
  4. Amgoune A, Thomas CM, Roisnel T, Carpentier JF, Chem. Eur. J., 12, 169 (2006)
  5. Stanford MJ, Dove AP, Chem. Soc. Rev., 39, 486 (2010)
  6. Radano CP, Baker GL, Smith MR, J. Am. Chem. Soc., 122(7), 1552 (2000)
  7. Albertsson AC, Varma IK, Biomacromolecules, 4(6), 1466 (2003)
  8. Lee WK, Clean Technology., 17, 194 (2011)
  9. Dijkstra PJ, Du H, Feijen J, Polym. Chem., 2, 520 (2011)
  10. Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F, Macromolecules, 38(24), 9993 (2005)
  11. Csihony S, Beaudette TT, Sentman AC, Nyce GW, Hedrick JL, Adv. Synth. Catal., 346, 1081 (2004)
  12. Nederberg F, Connor EF, Moller M, Glauser T, Hedrick JL, Angew Chem. Int. Ed., 40, 2712 (2001)
  13. Basko M, Kubisa P, J. Polym. Sci. A: Polym. Chem., 44(24), 7071 (2006)
  14. Dechy-Cabaret O, Martin-Vaca B, Bourissou D, Chem. Rev., 104(12), 6147 (2004)
  15. Yoo JY, Kim DH, Ko YS, Polym.(Korea), 36(5), 593 (2012)
  16. Yoo JY, Ko YS, Polym.(Korea), 36(6), 693 (2012)
  17. Jung II, Haam S, Lim G, Ryu JH, Polym.(Korea), 36(1), 1 (2012)
  18. Yoo JY, Kim Y, Ko YS, J. Ind. Eng. Chem., 19(4), 1137 (2013)
  19. Kricheldorf HR, Kreisersaunders I, Boettcher C, Polymer, 36(6), 1253 (1995)
  20. Shueh ML, Wang YS, Huang BH, Kuo CY, Lin CC, Macromolecules, 37(14), 5155 (2004)
  21. Csihony S, Culkin DA, Sentman AC, Dove AP, Waymouth RM, Hedrick JL, J. Am. Chem. Soc., 127(25), 9079 (2005)
  22. Gorczynski JL, Chen JB, Fraser CL, J. Am. Chem. Soc., 127(43), 14956 (2005)
  23. Darensbourg DJ, Chem. Rev., 107(6), 2388 (2007)
  24. Finne A, Albertsson AC, J. Polym. Sci. A: Polym. Chem., 42(3), 444 (2004)
  25. Duda A, Macromolecules, 29(5), 1399 (1996)
  26. Jacobs C, Dubois P, Jerome R, Teyssie P, Macromolecules., 24, 3027 (1991)
  27. Espartero JL, Rashkov I, Li SM, Manolova N, Vert M, Macromolecules, 29(10), 3535 (1996)
  28. Pitet LM, Hait SB, Lanyk TJ, Knauss DM, Macromolecules, 40(7), 2327 (2007)
  29. Sudesh AK, Abe H, Doi Y, Prog. Polym. Sci., 25, 1503 (2000)