Polymer(Korea), Vol.37, No.5, 606-612, September, 2013
Glycidol을 개시제로 이용한 L-lactide 개환중합
Ring-Opening Polymerization of L-lactide with Glycidol as Initiator
E-mail:
초록
Al(O-i-Pr)3을 촉매로 이용하고 중합 개시제로 glycidol을 사용하여 L-lactide를 개환중합하여 glycidol-poly (lactide)(Gly-PLA)를 얻었다. 1H NMR 분석 결과 glycidol의 말단에 존재하는 수산기가 Gly-PLA에는 존재하지 않았고 이를 통해 glycidol의 말단에 존재하는 OH기가 개시제의 역할을 하여 중합이 진행되었음을 확인하였다. Llactide 용액중합과 벌크중합을 진행하였으며, L-lactide/glycidol 몰비, 중합 온도와 시간에 따라 생성된 Gly-PLA의 분자특성을 관찰하였다. L-lactide/glycidol 몰비가 증가할수록 수율과 분자량은 증가하였다. 또한 L-lactide/glycidol 몰비가 증가할수록 저분자량에 해당하는 낮은 녹는점 피크는 줄어들고, 고분자량에 해당하는 높은 녹는점 피크가 증가하였다.
Glycidol-poly(lactide) (Gly-PLA) were synthesized via L-lactide ring opening polymerization with glycidol as an initiator and Al(O-i-Pr)3 catalyst. The structure of Gly-PLA was analyzed and successfully confirmed by 1H NMR. The OH group of glycidol in Gly-PLA was absent according to the 1H NMR analysis, indicating that the terminal OH group of glycidol successfully served as an initiator in the L-lactide polymerization. The solution and bulk polymerizations of L-lactide with glycidol were performed to examine the effect of L-lactide/glycidol molar ratio, polymerization temperature and time on the molecular characteristics of Gly-PLA. The conversion and molecular weight increased with an increase in L-lactide/glycidol molar ratio. Gly-PLA showed the bimodal type DSC curve. The low Tm peak of low molecular weight reduced but the high Tm peak of high molecular weight increased as L-lactide/glycidol molar ratio increased.
- Tu Q, Wang JC, Liu R, Wang J, Colloids Surf. B:Biointerfaces., 102, 331 (2013)
- Spasova M, Mespouille L, Coulembier O, Paneva D, Manolova N, Rashkov I, Dubois P, Biomacromolecules, 10(5), 1217 (2009)
- Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A, Biomacromolecules, 7(12), 3316 (2006)
- Amgoune A, Thomas CM, Roisnel T, Carpentier JF, Chem. Eur. J., 12, 169 (2006)
- Stanford MJ, Dove AP, Chem. Soc. Rev., 39, 486 (2010)
- Radano CP, Baker GL, Smith MR, J. Am. Chem. Soc., 122(7), 1552 (2000)
- Albertsson AC, Varma IK, Biomacromolecules, 4(6), 1466 (2003)
- Lee WK, Clean Technology., 17, 194 (2011)
- Dijkstra PJ, Du H, Feijen J, Polym. Chem., 2, 520 (2011)
- Bourissou D, Martin-Vaca B, Dumitrescu A, Graullier M, Lacombe F, Macromolecules, 38(24), 9993 (2005)
- Csihony S, Beaudette TT, Sentman AC, Nyce GW, Hedrick JL, Adv. Synth. Catal., 346, 1081 (2004)
- Nederberg F, Connor EF, Moller M, Glauser T, Hedrick JL, Angew Chem. Int. Ed., 40, 2712 (2001)
- Basko M, Kubisa P, J. Polym. Sci. A: Polym. Chem., 44(24), 7071 (2006)
- Dechy-Cabaret O, Martin-Vaca B, Bourissou D, Chem. Rev., 104(12), 6147 (2004)
- Yoo JY, Kim DH, Ko YS, Polym.(Korea), 36(5), 593 (2012)
- Yoo JY, Ko YS, Polym.(Korea), 36(6), 693 (2012)
- Jung II, Haam S, Lim G, Ryu JH, Polym.(Korea), 36(1), 1 (2012)
- Yoo JY, Kim Y, Ko YS, J. Ind. Eng. Chem., 19(4), 1137 (2013)
- Kricheldorf HR, Kreisersaunders I, Boettcher C, Polymer, 36(6), 1253 (1995)
- Shueh ML, Wang YS, Huang BH, Kuo CY, Lin CC, Macromolecules, 37(14), 5155 (2004)
- Csihony S, Culkin DA, Sentman AC, Dove AP, Waymouth RM, Hedrick JL, J. Am. Chem. Soc., 127(25), 9079 (2005)
- Gorczynski JL, Chen JB, Fraser CL, J. Am. Chem. Soc., 127(43), 14956 (2005)
- Darensbourg DJ, Chem. Rev., 107(6), 2388 (2007)
- Finne A, Albertsson AC, J. Polym. Sci. A: Polym. Chem., 42(3), 444 (2004)
- Duda A, Macromolecules, 29(5), 1399 (1996)
- Jacobs C, Dubois P, Jerome R, Teyssie P, Macromolecules., 24, 3027 (1991)
- Espartero JL, Rashkov I, Li SM, Manolova N, Vert M, Macromolecules, 29(10), 3535 (1996)
- Pitet LM, Hait SB, Lanyk TJ, Knauss DM, Macromolecules, 40(7), 2327 (2007)
- Sudesh AK, Abe H, Doi Y, Prog. Polym. Sci., 25, 1503 (2000)