Applied Microbiology and Biotechnology, Vol.97, No.15, 7035-7048, 2013
GeoChip-based analysis of the functional gene diversity and metabolic potential of soil microbial communities of mangroves
Mangroves are unique and highly productive ecosystems and harbor very special microbial communities. Although the phylogenetic diversity of sediment microbial communities of mangrove habitats has been examined extensively, little is known regarding their functional gene diversity and metabolic potential. In this study, a high-throughput functional gene array (GeoChip 4.0) was used to analyze the functional diversity, composition, structure, and metabolic potential of microbial communities in mangrove habitats from mangrove national nature reserves in China. GeoChip data indicated that these microbial communities were functionally diverse as measured by the number of genes detected, unique genes, and various diversity indices. Almost all key functional gene categories targeted by GeoChip 4.0 were detected in the mangrove microbial communities, including carbon (C) fixation, C degradation, methane generation, nitrogen (N) fixation, nitrification, denitrification, ammonification, N reduction, sulfur (S) metabolism, metal resistance, antibiotic resistance, and organic contaminant degradation. Detrended correspondence analysis (DCA) of all detected genes showed that Spartina alterniflora (HH), an invasive species, did not harbor significantly different microbial communities from Aegiceras corniculatum (THY), a native species, but did differ from other species, Kenaelia candel (QQ), Aricennia marina (BGR), and mangrove-free mud flat (GT). Canonical correspondence analysis (CCA) results indicated the microbial community structure was largely shaped by surrounding environmental variables, such as total nitrogen (TN), total carbon (TC), pH, C/N ratio, and especially salinity. This study presents a comprehensive survey of functional gene diversity of soil microbial communities from different mangrove habitats/species and provides new insights into our understanding of the functional potential of microbial communities in mangrove ecosystems.