Applied Microbiology and Biotechnology, Vol.97, No.13, 5711-5720, 2013
Creation of endoglucanase-secreting Streptomyces lividans for enzyme production using cellulose as the carbon source
We screened for high-activity endoglucanase (EG) as a first step toward the creation of cellulose-assimilating Streptomyces lividans transformants. EGs derived from Thermobifida fusca YX, Tfu0901, and S. lividans, cellulase B (CelB), were successfully expressed. Genes encoding Tfu0901 or CelB were introduced into S. lividans using the integrative vector pTYM18 and the high-copy-number vector pUC702, and EG activity was detected in the supernatant of each transformant. To achieve coexpression of EG and transglutaminase, the transglutaminase gene was introduced into EG-secreting S. lividans using pUC702. S. lividans coexpressing EG and transglutaminase effectively assimilated phosphoric acid swollen cellulose. The yield of Streptomyces cinnamoneus transglutaminase in the culture supernatant was 7.2 mg/L, which was 18 times higher than that of the control strain. To demonstrate the versatility of our system, we also created an EG-producing S. lividans transformant capable of coexpressing endoxylanase. The EG-secreting S. lividans transformants constructed here can be used to produce other useful compounds through cellulose fermentation.