Korea-Australia Rheology Journal, Vol.25, No.3, 163-174, August, 2013
Physiological flow of shear-thinning viscoelastic fluid past an irregular arterial constriction
E-mail:
The present investigation deals with the effect of the shape of a stenosis on the flow characteristics of blood, having shear-thinning viscoelastic rheological properties by using a suitable mathematical model. Keeping the relevance of the physiological situation, the mathematical model is developed by treating blood as a non-Newtonian shear-thinning viscoelastic fluid characterised by unsteady Oldroyd-3-constant model through an axisymmetric irregular arterial stenosis obtained from casting of a mildly stenosed artery (cf. Back et al., 1984). Comparison with the well-known cosine-shaped stenosis, in order to estimate the effect of surface roughness on the flow characteristics of blood, has however not been ruled out from the present study. Numerical illustrations are presented for a physiological flow, as well as for an equivalent simple pulsatile flow with equal stroke volume to that of the physiological flow, and the differences in their flow behaviour are recorded and discussed. The Marker and Cell method is developed in cylindrical co-ordinate system in order to tackle the highly nonlinear governing equations of motion. The effects of the quantities of significance such as Reynolds number, Deborah number, blood viscoelasticity and flow pulsatility, as well on the velocity components, pressure drop, wall shear stress and patterns of streamlines are quantitatively investigated graphically. Comparison of the results reveals that although the behaviour of two different pulses are similar at the same instant of time, there exist some important deviations in the flow pattern, pressure drop and wall shear stress as well. The present results also predict that the excess pressure drop across the cosine stenosis compared with the irregular one is consistent with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.
- Amsden AA, Harlow FH, The SMAC Method: A numerical technique for calculating incompressible fluid flows, Los Alamos Scientific Lab. Report LA-4370. (1970)
- Anand M, Rajagopal K, Rajagopal KR, Theor. Comput. Fluid Dyn., 20, 239 (2006)
- Anand M, Rajagopal KR, Int. J.Cardiovas. Med. Sci., 4, 59 (2004)
- Andersson HI, Halden R, Glomsaker T, J. Biomech., 33, 1257 (2000)
- Arada N, Sequeira A, J. Math. Fluid Mech., 7, 451 (2005)
- Back LH, Cho YI, Crawford DW, Cuffel RF, ASME J. Biomech. Engng., 106, 48 (1984)
- Bodnar T, Sequeira A, Prosi M, Appl. Maths. Comput., 217, 5055 (2010)
- Brunette J, Mongrain R, laurier J, Galaz R, Tardif JC, Med. Engng. Phy., 30, 1193 (2008)
- Chakravarty S, Mandal PK, Sarifuddin, Int. J. Nonlin. Mech., 40, 1268 (2005)
- Chien S, Usami S, Skalak R, “Blood flow in small tubes,” Handbook of Physiology, Section 2: The cardiovascular system, Volume IV, Parts 1 & 2: Microcirculation, Renkins E, Michel CC (editors), Bethesda, Amer. Physio. Soc., 217 (1984)
- Chmiel H, Anadere I, Walitza E, Biorheol., 27, 883 (1990)
- Daly BJ, J. Biomech., 9, 465 (1976)
- Etter I, Schowalter WR, Trans. Soc. Rheol., 9, 351 (1965)
- Gijsen F, Van de Vosse F, Janssen J, J. Biomech., 32, 601 (1999)
- Harlow FH, Welch JE, Phy. Fluids., 8, 2182 (1965)
- Hirt CW, J. Comput. Phys., 2, 339 (1968)
- Ikbal A, Chakravarty S, Sarifuddin, Mandal PK, Int. J. Numer. Meth. Fluids., 67, 1655 (2011)
- Janela J, Moura A, Sequeira A, J. Comput. Appl. Maths., 234, 2783 (2010)
- Johnston PR, Kilpatrick D, J. Biomech., 24, 1069 (1991)
- Khanafer KM, Gadhoke P, Berguer R, Bull JL, Biorheol., 43, 661 (2006)
- Leuprecht A, Perktold K, Comput.Meth. Biomech. Biomed. Engng., 4, 149 (2000)
- Lukacova-Medvidova M, Zauskova A, Int. J. Numer. Meth. Fluids., 56, 1409 (2008)
- Mandal PK, Chakravarty S, Mandal A, Int. J. Comput. Math., 84, 1059 (2007)
- Mann DE, Tarbell JM, Biorheol., 27, 711 (1990)
- Markham G, Proctor MV, Modifications to the twodimensional incompressible fluid flow code ZUNI to provide enhanced performance, C.E.G.B. Report TPRD/L/0063/M82. (1983)
- McDonald DA, Blood Flow in Arteries, 2nd ed., Edward Arnold, London. (1974)
- Mustapha N, Mandal PK, Johnston PR, Amin N, Appl. Mathl. Model., 34, 1559 (2010)
- Nadau L, Sequeira A, Comput. Maths. Appli., 53, 547 (2007)
- Nerem RE, ASME J. Biomech. Engng., 114, 274 (1992)
- O’Brien V, Ehrlich LWI, J. Biomech., 18, 117 (1985)
- Phan-Thien N, Huilgol RR, Rheol. Acta., 24, 551 (1985)
- Philips W, Deutsch S, Biorheol., 12, 383 (1975)
- Politsis S, Souvaliotis A, Beris AN, J. Rheol., 35, 605 (1991)
- Pontrelli G, Proc. Instn. Mech. Engrs., Part H, J. Engng. Med., 215, 1 (2001)
- Pontrelli G, Math. Mod. Meth. Appl. Sci., 10, 187 (2000)
- Robertson AM, Sequeira RG, Owens RG, “Rheological models for blood,” Cardiovascular Mathematics. Modeling and simulation of the circulatory system (MS&A),Modeling, Simulation & Applications, Formaggia L, Quarteroni A, Veneziani A (Eds.), Vol.1, Springer-Verlag, 211 (2009)
- Robertson AM, Sequeira RG, Kameneva MV, “Hemorheology,” Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars), Galdi G, Rannacher R, Robertson AM, Turek S (Eds.), Vol. 37, Birkhauser Verlag, 63 (2008)
- Ross R, Amer. J. Pathol., 143, 987 (1993)
- Sankar DS, Lee U, Commun. Nonlinear Sci. Numer. Simulat., 15, 2086 (2010)
- Sarifuddin, Chakravarty S, Mandal PK, Int. J. Comput. Meth., 6, 361 (2009)
- Sarifuddin, Chakravarty S, Mandal PK, Layek GC, J. Med. Engng. Tech., 32, 385 (2008)
- Stergiopulos N, Spiridon M, Pythoud F, Meister JJ, J. Biomech., 29, 695 (1996)
- Thurston GB, Henderson NM, Biorheol., 43, 729 (2006)
- Thurston GB, Biorol., 26, 199 (1989)
- Thurston GB, Biorheol., 16, 149 (1979)
- Thurston GB, Biophys. J., 12, 1205 (1972)
- Usha R, Prema K, ZAMP., 50, 175 (1999)
- Waters SL, Alastruey J, Beard DA, Bovendeerd PHM, Davies PF, Jayaraman G, Jensen OE, Lee J, Parker KH, Eds., Prog.Biophy. Mol. Biol., 104, 49 (2011)
- Waters ND, King MJ, J.Phys. D. Appl. Phys., 4, 204 (1971)
- Welch JE, Harlow FH, Shannon JP, Daly BJ, The MAC method, Los Alamos Scientific Lab. Report LA-3425 (1966)
- Yakhot A, Grinberg L, Nikitin N, J. Biomech., 38, 1115 (2005)
- Yeleswarapu KK, Ph. D. thesis, Evaluation of continuum models for characterizing the constitutive behaviour of blood, University of Pittsburgh. (1996)
- Young DF, Tsai FY, J. Biomech., 6, 395 (1973)
- Zendehboodi GR, Moayeri MS, J. Biomech., 32, 959 (1999)