- Previous Article
- Next Article
- Table of Contents
Korea-Australia Rheology Journal, Vol.25, No.3, 121-127, August, 2013
Numerical investigation of hyperelastic wall deformation characteristics in a micro-scale stenotic blood vessel
E-mail:
Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed
that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.
- Ahmed SA, Giddens DP, J. Biomech., 16, 505 (1983)
- Avril S, Badel P, Duprey A, J. Biomech., 43(15), 2978 (2010)
- Bathe M, Kamm RD, J. Biomech Eng., 121, 361 (1999)
- Benra FK, Dohmen HJ, Pei J, Schuster S, Wan B, J. Appl.Maths., 2011, 853560 (2011)
- Cho SW, Kim SW, Sung MH, Ro KC, Ryou HS, Korea-Aust. Rheol. J., 23, 7 (2011)
- Eckmann DM, Bowers S, Stecker M, Cheung AT, Anesth. Analg., 91, 539 (2000)
- Formaggia L, Gerbeau JF, Nobile F, Quarteroni A, Comp. Methods in Appl.Mech. Eng., 191, 561 (2001)
- Gasser TC, Ogden RW, Holzapfel GA, J. R. Soc. Interface., 3, 15 (2006)
- Guo ZZ, Xiwen Z, Sci. China Life Sci., 54, 450 (2011)
- Kang M, Ji HS, Kim KC, Int. J. Biol. and Biomed Eng., 2, 1 (2008)
- Kawasaki R, Cheung N, Wang JJ, Klein R, Klein BEK, Cotch MF, Sharrett AR, Shea S, Islam FMA, Wong TY, J. Hypertens., 27, 2386 (2009)
- Kim KS, Chun MS, Korea-Aust. Rheol. J., 24(2), 89 (2012)
- Lee JS, Fung YC, Microvas. Res., 3, 272 (1971)
- Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, Xu Y, Biomed Eng. online., 5, 33 (2006)
- Lima R, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T, Annals of Biomed. Eng., 37, 1546 (2008)
- Liu Q, Mirc D, Fu BM, Annual Intl. Conf. of the IEEE., Mechanical Mechanisms for Thrombosis in Microvessels, Engineering in Medicine and Biology Society, USA, 173 (2001)
- Madhukar V, Mechanics of Materials, 2nd Ed., Michigan Technological University. (2012)
- Noren D, Palmer HJ, Frame MD, Biorheology., 37, 325 (2000)
- Ojha M, Cobbold RSC, Johnston KW, Hummel RL,, J.Fluid Mech., 203, 173 (1989)
- Pries AR, Secomb TW, Gaehtgens P, Gross JF, Circ. Res., 67, 826 (1990)
- Sheth V, Ritter A, Using computational fluid dynamics model to predict changes in velocity properties in stented carotid artery, Proc. of the COMSOL Conf. Paris. (2010)
- Shukla JB, Parihar RS, Rao BRP, Bulletin of Math. Biology., 42, 283 (1980)
- Smith W, Wang JJ, Wong TY, Rochtchina E, Klein R, Leeder SR, Mitchell P, Hypertension., 44, 442 (2004)
- Stroud JS, Berger SA, Saloner D, J. Biomech., 33, 443 (2000)
- Tang D, Yang C, Walker H, Kobayashi S, Ku DN, Comp. & Struct., 80, 1651 (2002)
- Tang D, Yang C, Kobayashi S, Ku DN, J. Biomech Eng., 123, 548 (2001)
- Taylor CA, Hughes TJR, Zarins CK, Comp. Methods in Appl. Mech. Eng., 158, 155 (1998)
- Tu C, Michel D, J. Biomech., 29(7), 899 (1996)
- Varghese SS, Frankel SH, J. Biomech Eng., 125, 445 (2003)