Applied Chemistry for Engineering, Vol.24, No.4, 350-356, August, 2013
Aging 조건에 따른 페로니켈 슬래그의 마그네슘 및 철 용출 특성
The Dissolution of Magnesium and Iron from Ferronickel Slag Depending on Aging Condition
E-mail:
초록
페로니켈 제조공정 슬래그를 대상으로 aging 조건에 따른 용출 특성을 연구하였다. 시료의 주성분은 54.05% SiO2, 34.33% MgO, and 5.51% Fe2O3이었다. 주 결정구조는 Enstatite [(Mg, Fe2+)SiO3]이었다. 페로니켈 슬래그를 침수, 공기유입 침수, 습윤공기 조건에서 3개월간 aging 처리하였다. 습윤공기 aging 조건이 가장 효과적이었다. 습윤공기 aging 처리한 슬래그에서 마그네슘과 철의 침출율이 각각 80.0%, 75.1%로 가장 우수하였다. XRD, SEM 분석결과 습윤공기 aging 처리한 슬래그에서 결정성분의 파괴정도가 가장 크게 나타났다.
Dissolution of ferronickel slag depending on aging condition was studied. Ferronickel slag typically contains 54.05% SiO2, 34.33% MgO, and 5.51% Fe2O3. The main structure composite was similar to Enstatite [(Mg, Fe2+)SiO3]. Ferronickel slag aging was made in 3 months under various experimental conditions, in water, bubbling water and wetting air. The most effective
aging condition was the wetting air treatment. In this condition, the dissolving concentration of Mg and Fe was 80.0% and 75.1% respectively. The XRD and SEM data revealed that the wetting air condition also showed the biggest structural damage.
- Choi SW, Kim V, Chang WC, Kim EY, Mag. of the Kor. Conc. Ins., 19, 28 (2007)
- park KH, Nam CW, Trends in Met. & Met. Eng., 21, 4 (2008)
- Kim EY, Choi SW, Kim V, Li Y, Park JH, J. of Kor.Soc. of Waste Management., 28, 672 (2011)
- Choi EW, Sungkyunkwan University, Seoul, Korea (2010)
- Ber RA, Rev. Mineral., 31, 565 (1995)
- Sougata H, John VW, Geochim. Cosmochim. Acta., 75, 7486 (2011)
- Walther RA, Walther JV, Geochim. Cosmochim. Acta., 55, 943 (1991)
- Samuel CMK, Klaus SL, Int. J. Gree. Gas Con., 5, 1073 (2011)
- Park AH, Jadhav R, Fan LS, J. Chem. Eng., 81, 885 (2003)
- Alexander G, Maroto-Valer MM, Gafarova-Aksoy P, Fuel, 86(1-2), 273 (2007)
- Yoo KK, Kim DJ, Chung HS, Kim MS, Lee JC, J. of Min. & Ener. Res., 45, 257 (2008)
- Odeta Q, Libor K, Ravi KK, Eugene SI, Bruce WA, Jiri T, Andrew RF, Chem. Geol., 332, 124 (2012)
- Elena VK, Alexander MK, Willis F, Victor NM, Int.J. Process., 61, 289 (2001)
- Mischa W, Marcel V, Gert VM, Marco M, Ener. Pro., 4, 2043 (2011)
- Pascal S, Lindqvist JE, Maria A, Paul FK, Cei. of Total Envir., 407, 5110 (2009)
- Schott J, Berner RA, Sjober EL, Geochim. Cosmochim.Acta., 45, 2123 (1981)
- Schott J, Berner RA, Geochim. Cosmochim. Acta., 47, 2233 (1983)
- Drever JI, 35, Reidel D, Dordrecht (1985)
- Seyama H, Soma M, Tanaka A, Chem. Geol., 129, 209 (1996)
- Noh TH, Lee TG, Kor. J. of Met. & Mat., 45, 673 (2007)
- Jonckbloed RCL, J. of Geochem. Exp., 62, 337 (1998)
- Arroyo JC, Gillaspie JD, Neudorf DA, Weenink EM, US Patent 6,379,636 B2 (2002)
- Filio JM, Sugiyama K, Kasai E, Saito F, J. Chem. Eng.Japan., 26, 565 (1993)
- Daniel EG, Robert GB, Catherine AP, Chem. Geol., 217, 257 (2005)
- Ja HK, Jian ZH, Romulus VF, Kevin MR, Eugene SI, Chonggmin W, Jesse AS, Mark HE, Andrew RF, David WH, Int. J. Gree. Gas Con., 5, 1081 (2011)
- Korea Patent 10-2010-085599 (2010)