화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.8, 1644-1651, August, 2013
Silica nanoparticles modified with a Schiff base ligand: An efficient adsorbent for Th(IV), U(VI) and Eu(III) ions
E-mail:
Modification of SiO2 nanoparticles by salicylaldiminepropyl results in efficient adsorbents for removal of Th4+, UO22+ and Eu3+ ions from aqueous solutions. The effect of parameters influencing the adsorption efficiency such as aqueous phase pH, contact time, initial metal ions concentration, adsorbent dosage and temperature dependency of the process was verified and discussed. Under optimal conditions (pH 5.5, adsorbent dosage 0.05 g, contact time 30 min. and 25 ℃), thorium and uranyl ions (initial concentration 20 mg/l) were quantitatively removed from 20 ml of sample solution. Under such conditions 85% of europium ions was removed. Comparison of the adsorption efficiency of the studied modified nano-particles with those unmodified ones shows a shift for uptake of the metal ions vs. pH curves towards lower pH values by applying the modified adsorbents. In addition, a significant improvement of europium ions adsorption was observed by using the modified nanoparticles. Kinetics of the process was studied by considering a pseudo second-order model. This model predicts chemisorption for the adsorption mechanism. Freundlich, Langmuir and Temkin models were suitable for describing the equilibrium data of Th4+, UO22+ and Eu3+ adsorption process, respectively. Thermodynamic investigation reveals the adsorption process of the studied ions is entropy driven.
  1. Malone JF, Marrs DJ, McKervey MA, O’Hagan P, Thompson N, Walker A, Aranaud-Neu F, Mauprivez O, Schwing-Weill MJ, Dozol JF, Rouquette H, Simon N, J. Chem. Soc., Chem. Commun., 2151 (1995)
  2. Arnaud-Neu F, Bohmer V, Dozol JF, Gruttner C, Jakobi RA, Kraft D, Mauprivez O, Rouquette H, Schwing-Weill MJ, Simon N, Vogt W, J. Chem. Soc., Perkin Trans. II., 1175 (1996)
  3. Nash KL, Solvent Extr. Ion Exch., 11, 729 (1993)
  4. Madic C, Bourgesm J, Dozol JF, International conference on accelerators-driven transmutation technology and applications, Las Vegas (1994)
  5. Raju CSK, Subramanian MS, Sivaraman N, Srinivasan TG, Roab BRV, J. Chromatogr. A., 1156, 340 (2007)
  6. Jain VK, Pandya RA, Pillai SG, Shrivastav PS, Talanta., 70, 257 (2006)
  7. Joona JK, Mikko JS, Hanna JHH, Simo KTT, Opt. Exp., 14, 11539 (2006)
  8. Gupta B, Malik P, Deep A, J. Radioanal. Nucl. Chem., 251, 451 (2002)
  9. Eskandari Nasab M, Samm A, Milani SA, Hydrometallurgy., 106, 141 (2011)
  10. Sahu SK, Chakravortty V, Reddy MLP, Ramamohan TR, Talanta., 51, 523 (2000)
  11. Zhong X, Wu Y, Radioanal J, Nucl. Chem., 292, 355 (2012)
  12. Kumar P, Pal A, Saxena MK, Ramakumar KL, Desalination, 232(1-3), 71 (2008)
  13. Fujiwara A, Kameo Y, Hoshi A, Haraga T, Nakashima M, J.Chromatogr. A., 1140, 163 (2007)
  14. Jaison PG, Telmore VM, Kumar P, Aggarwal SK, J. Chromatogr.A., 1216, 1383 (2009)
  15. Hritcu D, Humelnicu D, Dodi G, Popa MI, Carbohyd. Polym., 87, 1155 (2012)
  16. Pereira MD, Arruda MAZ, Microchim. Acta., 141, 115 (2003)
  17. Ghiasvand AR, Ghaderi R, Kakanejadifard A, Talanta., 62, 287 (2004)
  18. Jal PK, Patel S, Mishra BK, Talanta., 62, 1005 (2004)
  19. Gurnani V, Singh AK, Venkataramani B, Anal. Chim. Acta., 485, 221 (2003)
  20. El-shahat MF, Moawed EA, Zaid MAA, Talanta., 59, 851 (2003)
  21. Uzun A, Soylak M, Elc IL, Talanta., 54, 197 (2001)
  22. Nelms SM, Greenway GM, Koller D, J. Anal. At. Spectrom., 11, 907 (1996)
  23. Patil S, Sandberg A, Heckert E, Self W, Seal S, Biomolecules., 28, 4600 (2007)
  24. Stumf MJP, Graf C, Ruhi E, Muller RH, Int. J. Pharm., 428, 125 (2012)
  25. Saxena A, Mangal L, Rai PM, Rawat AS, Kumar V, Datta M, J. Hazard. Mater., 180(1-3), 566 (2010)
  26. Ghosh S, Badruddoza AZM, Uddin MS, Hidajat K, J. Colloid Interface Sci., 354(2), 483 (2011)
  27. Feng YA, Gong JL, Zeng GM, Niu QY, Zhang HY, Niu CG, Deng JH, Yan M, Chem. Eng. J., 162(2), 487 (2010)
  28. Sharma YC, Srivastava V, Singh VK, Kauf SN, Weng CH, Environ. Technol., 30, 583 (2009)
  29. Nilchi A, Shariati Dehaghan T, Rasoul Garmarodi S, Desalination., DOI: 10.16/j.desal.2012.06.022.
  30. Sadeghi S, Azhdari H, Arabi H, Zeraatkar Moghadam A, J.Hazard. Matter., 215-216, 208 (2012)
  31. Sayin S, Yilmaz M, Desalination, 276(1-3), 328 (2011)
  32. Shiri-Yekta Z, Yaftian MR, Nilchi A, J.Iran. Chem. Soc., 10, 221 (2013)
  33. Sehati N, Shiri-Yekta Z, Zamani AA, Yaftian MR, Noshiranzadeh N, Sep. Sci. Technol., 47(5), 670 (2012)
  34. Yaftian MR, Razipour MR, Matt D, J.Radioanal. Nucl. Chem., 270, 357 (2006)
  35. Yaftian MR, Taheri R, Zamani AA, Matt D, J. Radioanal. Nucl. Chem., 262, 255 (2004)
  36. Zamani AA, Yaftian MR, Sep. Purif. Technol., 40(2), 115 (2004)
  37. Yaftian MR, Eshraghi ME, Hassanzadeh L, Iran. J. Chem. Chem. Eng., 22, 71 (2003)
  38. Yaftian MR, Hassanzadeh L, Eshraghi ME, Matt D, Sep. Purif. Technol., 31(3), 261 (2003)
  39. Fathi SAM, Rostamkhani S, Yaftian MR, J. Anal. Chem., 65, 614 (2010)
  40. Parinejad M, Yaftian MR, Iran. J. Chem. Chem. Eng., 28, 85 (2009)
  41. Fathi SAM, Yaftian MR, J. Colloid Interface Sci., 334(2), 167 (2009)
  42. Fathi SAM, Yaftian MR, J. Hazard. Mater., 164(1), 133 (2009)
  43. Ghorbanloo M, Monfared HH, Janiak C, J. Mol. Catal. A-Chem., 345(1-2), 12 (2011)
  44. Dean JA, Analytical chemistry handbook, McGraw-Hill, New York (1995)
  45. Ho YS, Ofomaja AE, J. Hazard. Mater., B129, 137 (2006)
  46. Jiang H, Xu Y, Zhang J, Zhang L, Han R, Life Sci. J., 4, 42 (2007)
  47. Vadivelan V, Kumar KV, J. Colloid Interface Sci., 286(1), 90 (2005)
  48. Mehrasbi MR, Farahmandkia Z, Taghibeigloo B, Taromi A, Water Air Soil Pollut., 199, 343 (2009)
  49. Nameni M, Alavi Moghadam MR, Arami M, Int. J. Environ.Sci. Technol., 5, 161 (2008)