Journal of the Korean Industrial and Engineering Chemistry, Vol.4, No.3, 474-481, September, 1993
극성이 상이한 용질-용매계에서 무한희석 활동도 계수의 가스크로마토그래피에 의한 측정
Infinite Dilution Activity Coefficients by Gab Chromatography for Variously Polarized Solute-Solvent Systems
초록
무극성, 극성 용매 중 무극성, 극성용질의 무한희석 활동도계수를 가스 크로마토그래피에 의하여 60℃로부터 100℃ 범위에서 측정하였다. 무극성용매(n-octadecane)와 극성용매(n-hexadecyl alcohol)에 있어서 무극성용질(alkanes, cyclohexane, benzene, toluene과 CCl4)의 lnγ∞는 1/T 따라 비례하여 증가하였으며, 일정온도에서 동족렬의 lnγ∞는 용질의 탄소수 증가에 따라 비례하여 증가하였다. 극성용질(alcohols, esters and ketones)과 약극성용매(di-2-ethyl adiphate and di-2-ethylhexylsebacate)계에서, 용질의 lnγ∞는 1/T 증가에 따라 변화율이 증가하였으며, 또 일정온도에서 동족렬 용질의 lnγ∞는 탄소수 증가에 따라 반비례하여 감소하였다. 극성용질(alcohols, esters and ketones)은 극성이 큰 용매(triphenyl-phosphate and tricresyl phosphate)계에 있어서, lnγ∞는 1/T 증가에 따라 변화율이 증가하였으며, 일정온도에서 동족렬의 lnγ∞는 용질의 탄소수 증가에 따라 비례하여 증가하였다.
The infinite dilution activity coefficients(γ∞) of nonpolar and polar solutes have been determined in different solvents at temperature between 60 and 100℃ by using gas chromatography. The lnγ∞ values of nonpolar solutes(alkanes, cyclohexane, benzene, toluene and CCl4) were linearly increased as 1/T in the nonpolar solvent (n-octadecane) and the polar solvent(n-hexadecyl alcohol) systems and the lnγ∞ values at the constant temperature were increased with the number of carbon atoms of solute molecule. For the polar solutes(alcohols, esters and ketones) and the weak polar solvent(di-2-ethyl adiphate and di-2-ethylhexyl sebacate) systems, the relations of lnγ∞ vs. 1/T were found to be curved with increased slope, and the lnγ∞ values at constant temperature were linearly diminished as increasing the number of carbon atoms of solute molecule. For the polar solutes(alcohols, esters and ketones) and the strong polar solvents(triphenyl phosphate and tricresyl phosphate)systems, the relations of lnγ∞ vs. 1/T were found to be curved with increased slope but lnγ∞ values at constant temperture were linerly increased as increasing the number of carbon atoms of solute molecule.
- Loblen GM, Prausnitz JM, Ind. Eng. Chem. Fundam., 21, 109 (1982)
- Eckert CA, Newman BA, Nicolaides GL, Long TC, AIChE J., 27, 33 (1981)
- Leroi JC, Masson JC, Renon H, Fabries JF, Sannier H, Ind. Eng. Chem. Process Des. Dev., 16, 139 (1977)
- Bastos J, Soares ME, Medina AG, Ind. Eng. Chem. Process Des. Dev., 24, 420 (1985)
- Kojima K, Tochigi T, "Prediction of Vapor-Liquid Equilibria by the ASOG Method," Kodansha-Elsevier, Tokyo (1979)
- Fredenslund A, Jones RL, Prausnitz JM, AIChE J., 31, 1086 (1975)
- Fredenslund A, Gmehling J, Rasmussn P, "Vapor-Liquid Equilibria using UNIFAC," Elsevier, Amsterdam (1977)
- Alessi P, Kikic I, Fredenslund A, Rasmussen P, Can. J. Chem. Eng., 60, 300 (1982)
- Thomas ER, Eckert CA, Ind. Eng. Chem. Process Des. Dev., 23, 194 (1984)
- Sanlacesaria E, Berkendis D, Carra S, Fluid Phase Equilib., 3, 167 (1979)
- Pecsar RE, Martin JJ, Anal. Chem., 38, 1661 (1966)
- Desty DH, Swanton WT, J. Phys. Chem., 65, 766 (1961)
- James AT, Martin AJP, Biochem. J., 50, 679 (1952)
- Timmermans J, "Physico-Chemical Constants of Pure Organic Compounds," Elsevier, New York, Vol. 1-2 (1950)
- Prausnitz JM, "Computer Calculations for Multicomponent Vapor-Liquid Equilibria," Prentice-Hall Inc., Englewood Cliffs, N.J. (1980)
- Tsonopoulos C, AIChE J., 20, 263 (1974)
- Tsonopoulos C, AIChE J., 21, 827 (1975)
- Tsonopoulos C, AIChE J., 24, 1112 (1978)
- Cruickshank AJB, Gainey BW, Young CL, Trans. Faraday Soc., 64, 337 (1968)
- Alessi P, Kikic I, Alessandrini A, Fermeglia M, J. Chem. Eng. Data, 27, 445 (1982)
- Janini GM, Martire DE, J. Phys. Chem., 78, 1644 (1974)
- Gainey BW, Young CL, Trans. Faraday Soc., 64, 349 (1968)
- Turek EA, Greenkorn RA, Chao KC, J. Chem. Eng. Data, 24, 296 (1979)
- Alessi P, Kikic I, Torriano G, J. Chromatogr., 133, 190 (1977)
- Alessi P, Kikic I, Papo A, Torriando G, J. Chem. Eng. Data, 23, 29 (1978)