Separation Science and Technology, Vol.48, No.7, 1003-1014, 2013
Mathematical Model for the Extraction of Neodymium from Nitrate Media using Hollow Fiber Supported Liquid Membrane Operated in a Recycling Mode
A mathematical model for facilitated extraction of Neodymium (Nd3+) ions from nitrate media using microporous hollow fiber supported liquid membrane (HFSLM) operated in a recycling mode is presented. Extractant N,N,N, N-tetraoctyl diglycolamide (TODGA) diluted with n-dodecane was used as the membrane phase. Di-n-hexyl octanamide (DHOA) has been used as a phase modifier for the extractant. The model developed is not specific to the case considered and has a more general and wide applicability. The model has been developed using equilibrium-based approach. The complexation and de-complexation reactions were assumed to be fast and at equilibrium. Mass balance equations for both acid (HNO3) and TODGA were also incorporated in the model. It was observed that the model results are in good agreement with the experimental data when diffusivity of metal-complex (D m ) and acid-complex (D hm ) through the membrane phase in the pore is 6x1012m2/s and 1.2x1010m2/s. Once the values of D m and D hm are estimated by simulation for one set of data, there are no further fitting parameters in the model. The model can then be used in a truly predictive mode for all the remaining data sets.