화학공학소재연구정보센터
Separation Science and Technology, Vol.47, No.16, 2373-2380, 2012
Process Design of Groundnut Husk Waste for Pb2+ and Cd2+ Ions Mitigation in Drinking Water Purification
This present work has explored a novel application of modified Arachis hypogaea (groundnut) husk on mitigation of toxic Pb2+ and Cd2+ ions in aqueous phase. Ecotoxicological assessment of exhausted adsorbent was investigated as per standard OECD guidelines. Standard deviation, correlation coefficient, and the reduced chi square test were evaluated and compared statistically on experimental data. The results showed good sorption capacities-31.62 and 29.78 mg g(-1) for Pb2+ and Cd2+ ions, respectively. Pseudo first-order rate kinetics was well correlated for Pb2+ and Cd2+ ions sorption over all kinetic models. The sorption data was in good agreement with the Freundlich isotherm for Pb2+ and the Sips model for Cd2+ ions sorption. The sorption capacity was endothermic in nature. Pb2+ ions desorption was three times faster than Cd2+ ions. The sorption mechanism was plausibly explained by spectroscopic techniques. Herein, the tailored abundant agro-waste material is a competitive sorbent and may be exploited in decontamination of metal ions in a wide range of concentrations. Supplemental materials are available for this article. Go to the publisher's online edition of Separation Science and Technology to view the free supplemental file.