Polymer Bulletin, Vol.70, No.4, 1337-1351, 2013
Non-isothermal curing kinetics of epoxy/mechanochemical devulcanized ground rubber tire (GRT) composites
The curing behavior of diglycidyl ether of bisphenol A (DGEBA) epoxy and specially ground mechanochemical devulcanized ground rubber tire system (GRT) in the presence of polyoxyalkyleneamine curing agent was investigated by non-isothermal differential scanning calorimetry technique at different heating rates. Scanning electron microscopic-energy dispersive X-ray spectroscopy, and attenuated total reflection infrared spectroscopy were used to characterize the GRT particles. The kinetic parameters of curing process were determined by isoconversional method given by Malek. The average activation energy E (a) was found to be 52.3-60.7 and 45-59.2 kJ/mol for neat epoxy amine (Epo am 31) and epoxy/amine with GRT (5 Epo am 31) systems, respectively. It was observed that the presence of GRT in epoxy/amine promotes the curing. A two parameter (m, n) autocatalytic model (SB equation) was found to be the most adequate to describe the cure kinetics of the studied epoxy/GRT system. A dominant catalyzing effect of GRT on the curing reaction was observed which is attributed to the complexity of the reaction at later stages of curing, therefore, it was not possible to model the reaction over the whole range of degree of conversion.