화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.4, No.1, 144-152, March, 1993
PEG/y-Al2O3 상이동 촉매상에서 니트로벤젠과 Fe(CO)5로부터의 아닐린 합성
Synthesis of Aniline from Nitrobenzene and Fe(CO)5 with PEG/γ-Al2O3 as Phase Transfer Catalyst
초록
γ-Al2O3, α-Al2O3, SiO2, TiO2 등에 고정화된 폴리에틸렌글리콜을 Fe(CO)5에 의한 니트로벤젠의 상온 환원반응에 상이동 촉매로 사용하였다. 고정화된 PEG의 몰수는 담체의 비표면적에 따라 증가하였고 PEG/γ-Al2O3가 가장 좋은 활성을 나타내었다. PEG의 사슬길이가 길고 NaOH 농도가 높을수록 반응속도가 증가하였다. 적외선분광기를 이용하여 반응기구에 대한 고찰도 함께 실시하였으며 폴리에틸렌글리콜 상이동 촉매는 본 반응의 활성물질로 알려진 HFe(CO)4-이온의 생성과 이의 유기상으로의 이동을 촉진시키는 것으로 판단되었다.
Immobilized polyethylene glycols onto metal oxides such as γ-Al2O3, α-Al2O3, SiO2 and TiO2 were used as phase transfer catalysts for the room temperature synthesis of aniline from nitrobenzene and ironpentacarbonyl. The amount of attached PEG molecules increased with specific surface area of metal oxides. Among the immobilized catalysts tested PEG/γ-Al2O3 showed the highest activity. The reaction rate increased with the chain length of PEG mole-cules and the aqueous NaOH concentration. Mechanistic study carried out using infrared spectrometer revealed that the role of PEG was to increase the formation of HFe(CO)4-ion, which is known as active species, and its movement from aqueous to organic phase.
  1. Ger. Offen. 2,320,658 (1975)
  2. Ger. Offen. 2,244,401 (1970)
  3. U.S. Patent, 3,136,818 (1964)
  4. Ger. Offen. 2,208,829 (1972)
  5. Ger. Offen. 2,026,053 (1970)
  6. Becker M, Russell JL, Chem. Eng., 80, 42 (1973)
  7. des Abbayes H, Alper H, J. Am. Chem. Soc., 99, 98 (1977) 
  8. Alper H, Amaratunga S, Tetrahedron Lett., 21, 2603 (1980) 
  9. Starcks CM, Liotta C, "Phase Transfer Catalysis," Academic Press, N.Y. (1978)
  10. Ageletti E, Tundo P, Venturello PJ, Org. Chem., 48, 4106 (1983) 
  11. Ger. Offen. DE 3,334,876 (1984)
  12. Evans TL, Synth. Commun., 14, 435 (1984)
  13. Cho BR, Park SD, Bull. Korean Chem. Soc., 5, 126 (1984)
  14. Kimura Y, Regen SL, J. Org. Chem., 48, 1533 (1983) 
  15. Gokel GW, Goli PM, Schultz RA, J. Org. Chem., 48, 2837 (1983) 
  16. Freedman HH, Pure Appl. Chem., 58, 857 (1986)
  17. Wang ML, Chang KR, Ind. Eng. Chem. Res., 29, 40 (1990) 
  18. Shan Y, Kang RH, Li W, Ind. Eng. Chem. Res., 28, 1289 (1989) 
  19. Regen SL, J. Am. Chem. Soc., 99, 3838 (1977) 
  20. Ford WT, Adv. Polym. Sci., 55, 49 (1984)
  21. Mackenzie WM, Scherrignton DC, Polymer, 22, 431 (1981) 
  22. Sawicki RA, Tetrahedron Lett., 23, 2249 (1982) 
  23. Oh SY, Chun SW, Park DW, Park SW, Shin JH, J. Korean Ind. Eng. Chem., 3(4), 620 (1992)
  24. Gans PL, Samuel WG, Patrick MJ, Tetrahedron Lett., 29, 5083 (1988) 
  25. Laszlo M, Mazin AR, Irma O, J. Org. Chem., 218, 369 (1981)
  26. Watanabe Y, Mitsudo T, Yamashita M, Takegami Y, Bull. Chem. Soc. Jpn., 48, 1478 (1975) 
  27. Darensbourg MY, Darensbourg DJ, Barros HLC, Inorg. Chem., 17, 298 (1978)